Jump to ContentJump to Main Navigation
Show Summary Details

Acta Parasitologica

4 Issues per year


IMPACT FACTOR increased in 2015: 1.293

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.780
Impact per Publication (IPP) 2015: 1.132

Online
ISSN
1896-1851
See all formats and pricing
Volume 53, Issue 1 (Mar 2008)

Issues

Intra- or inter-specific difference in genotypes of Caligus elongatus Nordmann 1832?

Øivind Øines
  • Section for Parasitology, National Veterinary Institute, P.O. Box 8156 Dep., Oslo, Norway
  • Email:
/ Thomas Schram
  • Department of Biology, University of Oslo, P.O. Box 1066, Blindern, Oslo, Norway
  • Email:
Published Online: 2008-04-07 | DOI: https://doi.org/10.2478/s11686-008-0002-2

Abstract

Two mitochondrial and one nuclear genetic marker were used to study the phylogenetic position of the two reported CO1-genotypes of Caligus elongatus in a group of closely related caligid parasites. Molecular analysis of the two mitochondrial genes (CO1 and 16S), indicate genetic distances of the two C. elongatus genotypes in the lower range of distances previously reported between other crustacean species, but higher than comparable reported within-species differences. Analyses of nuclear 18S sequences indicate no detectable differentiation between these genotypes, but may be due to expected differences in the resolution of these genetic markers. Investigation of two of three selected morphological characters reveals phenotypes supporting the division based on the molecular division. The species status on the two C. elongatus genotypes cannot be drawn conclusively, although the molecular and morphological data presented here suggests the presence of sibling species.

Keywords: Parasitic copepod; Caligus elongatus; phylogeny; 16S; CO1; 18S

  • [1] Boxshall G., Halsey S.H. 2004. Siphonostomatoida. In: An introduction to copepod diversity. The Ray Society, Series, London, 706–833.

  • [2] Bricknell I.R., Bron J.E., Bowden T.J. 2006. Diseases of gadoid fish in cultivation: a review. ICES Journal of Marine Science, 63, 253–266. DOI: 10.1016/j.icesjms.2005.10.00. http://dx.doi.org/10.1016/j.icesjms.2005.10.009 [Crossref]

  • [3] Goetze E. 2003. Cryptic speciation on the high seas; global phylogenetics of the copepod family Eucalanidae. Proceedings of the Royal Society of London, Ser. B, 270, 2321–2331. DOI: 10.1098/rspb.2003.2505. http://dx.doi.org/10.1098/rspb.2003.2505 [Crossref]

  • [4] Goetze E., Bradford-Grieve J. 2005. Genetic and morphological description of Eucalanus spinifer T. Scott, 1894 (Calanoida: Eucalanidae), a circumglobal sister species of the copepod E. hyalinus (Claus, 1866). Progress in Oceanography, 65, 55–87. DOI: 10.1016/j.pocean.2005.02.015. http://dx.doi.org/10.1016/j.pocean.2005.02.015 [Crossref]

  • [5] Hebert P.D.N., Ratnasingham S., Dewaard J.R. 2003. Barcoding animal life: cytochrome C oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London, Ser. B, Suppl., 270, 96–99. http://dx.doi.org/10.1098/rsbl.2003.0025

  • [6] Heuch P.A., Øqines Ø., Knutsen J.A., Schram T.A. 2007. Infection of wild fishes by the parasitic copepod Caligus elongatus on the south east coast of Norway. Diseases of Aquatic Organisms, 77, 148–158. DOI: 10.3354/dao01833. http://dx.doi.org/10.3354/dao01833 [Crossref] [Web of Science]

  • [7] Ho J.S. 1994. Copepod phylogeny — a reconsideration of Huys-and-Boxshall parsimony versus homology. Hydrobiologia, 293, 31–39. DOI: 10.1007/BF00229920. http://dx.doi.org/10.1007/BF00229920 [Crossref]

  • [8] Ho J.S., Lin C.L. 2002. New species of Metacaligus (Caligidae, Copepoda) parasitic on the cutlassfish (Trichiurus lepturus) of Taiwan, with a cladistic analysis of the family Caligidae. Zoological Science, 19, 1363–1375. DOI: 10.2108/zsj.19.1363. http://dx.doi.org/10.2108/zsj.19.1363 [Crossref]

  • [9] Hu M., Chilton N.B., El Osta Y.G.A., Gasser R.B. 2003. Comparative analysis of mitochondrial genome data for Necator americanus from two endemic regions reveals substantial genetic variation. International Journal for Parasitology, 33, 955–963. DOI: 10.1016/S0020-7519(03)00129-2. http://dx.doi.org/10.1016/S0020-7519(03)00129-2 [Crossref]

  • [10] Huys R., Boxshall G.A. 1991. Copepod evolution. The Ray Society Series, London, 468 pp.

  • [11] Huys R., Conroy-Dalton S. 2006. Revision of the genus Evansula T. Scott, 1906 (Copepoda, Harpaticoida, Cylindropsyllidae) with a description of three new species. Zoological Journal of the Linnean Society, 147, 419–472. DOI: 10.1111/j.1096-36-2.2006.00227.x. http://dx.doi.org/10.1111/j.1096-3642.2006.00227.x [Web of Science] [Crossref]

  • [12] Huys R., Llewellyn-Hughes J., Olson P.D., Nagasawa K. 2006. Small subunit rDNA and Bayesian inference reveal Pectenophilus ornatus (Copepoda incertae sedis) as highly transformed Mytilicolidae, and support assignment of Chondracanthidae and Xarifiidae to Lichomolgoidea (Cyclopoida). Biological Journal of the Linnean Society, 87, 403–425. DOI: 10.1111/j.1095-8312.2005.00579.x. http://dx.doi.org/10.1111/j.1095-8312.2005.00579.x [Crossref]

  • [13] Johnson S.C., Treasurer J.W., Bravo S., Nagasawa K., Kabata Z. 2004. Areview of the impact of parasitic copepods on marine aquaculture. Zoological Studies, 43, 229–243.

  • [14] Jones S.R.M., Prosperi-Porta G., Kim E., Callow P., Hargreaves N.B. 2006. The occurrence of Lepeophtheirus salmonis and Caligus clemensi (Copepoda: Caligidae) on three-spine stickleback Gasterosteus aculeatus in coastal British Colombia. Journal of Parasitology, 92, 473–480. DOI: 10.1645/GE-685R1.1. http://dx.doi.org/10.1645/GE-685R1.1 [Crossref]

  • [15] Kabata Z. 1979. Parasitic Copepoda of British fishes. The Ray Society, London, 468 pp.

  • [16] Kimura M. 1980. Asimple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120. DOI: 10.1007/BF01731581. http://dx.doi.org/10.1007/BF01731581 [Crossref]

  • [17] Knowlton N. 1993. Sibling species in the sea. Annual Review of Ecology and Systematics, 24, 189–216. DOI: 10.1146/annurev.es.24.110193.001201. http://dx.doi.org/10.1146/annurev.es.24.110193.001201 [Crossref]

  • [18] Knowlton N. 2000. Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420, 73–90. DOI: 10.1023/A:1003933603879. http://dx.doi.org/10.1023/A:1003933603879 [Crossref]

  • [19] Kumar S., Tamura K., Nei M. 2004. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163. DOI: 10.1093/bib/5.2.150. http://dx.doi.org/10.1093/bib/5.2.150 [Crossref]

  • [20] Landry C., Geyer L.B., Arakaki Y., Uehara T., Palumbi S.R. 2003. Recent speciation in the Indo-West Pacific: rapid evolution of gamete recognition and sperm morphology in cryptic species of sea urchin. Proceedings of the Royal Society of London, Ser. B, 270, 1839–1847. DOI: 10.1098/rspb.2003.2395. http://dx.doi.org/10.1098/rspb.2003.2395 [Crossref]

  • [21] Lee B.N. 1995. Genetic structure of Tigripous californicus populations inferred from mitochondrial cytochrome oxidase 1 sequences. PhD Thesis, University of Houston, USA.

  • [22] Lee C.E., Frost B.W. 2002. Morphological stasis in the Eurytemora affinis species complex (Copepoda: Temoridae). Hydrobiologia, 480, 111–128. DOI: 10.1023/A:1021293203512. http://dx.doi.org/10.1023/A:1021293203512 [Crossref]

  • [23] Lefébure T., Douady C.J., Gouy M., Gibert J. 2006. Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution, 40, 435–447. DOI: 10.1016/j.ympev.2006.03.014. http://dx.doi.org/10.1016/j.ympev.2006.03.014 [Crossref]

  • [24] Macnish M.G., Morgan-Ryan U.M., Monis P.T., Behnke J.M., Thompson R.C.A. 2002. A molecular phylogeny of nuclear and mitochondrial sequences in Hymenolepis nana (Cestoda) supports the existence of a cryptic species. Parasitology, 125, 567–575. DOI: 10.1017/S0031182002002366. [Crossref]

  • [25] McBeath A.J.A., Penston M.J., Snow M., Cook P.F., Bricknell I.R., Cunningham C. 2006. Development and application of realtime PCR for specific detection of Lepeophtheirus salmonis and Caligus elongatus larvae in Scottish plankton samples. Diseases of Aquatic Organisms, 73, 141–150. DOI: 10.3354/dao073141. http://dx.doi.org/10.3354/dao073141 [Crossref]

  • [26] Øines Ø. 2007. Host selection and infection strategies in Caligus elongatus. PhD Thesis, Norwegian Shool of Veterinary Science, Norway.

  • [27] Øines Ø., Heuch P.A. 2005. Identification of sea louse species of the genus Caligus using mtDNA. Journal of the Marine Biological Association of the United Kingdom, 85, 73–79. DOI: 10.1017/S0025315405010854h. http://dx.doi.org/10.1017/S0025315405010854h [Crossref]

  • [28] Øines Ø., Heuch P.A. 2007. Caligus elongatus genotypes on wild and farmed fish. Journal of Fish Diseases, 30, 81–91. DOI: 10.1111/j.1365-2761.2007.00783.x. http://dx.doi.org/10.1111/j.1365-2761.2007.00783.x [Crossref] [Web of Science]

  • [29] Øines Ø., Simonsen J.H., Knutsen J.A., Heuch P.A. 2006. Host preference of adult Caligus elongatus Nordmann in the laboratory and its implications for Atlantic cod aquaculture. Journal of Fish Diseases, 29, 167–174. DOI: 10.1111/j.1365-2761.2006.00702.x. http://dx.doi.org/10.1111/j.1365-2761.2006.00702.x [Crossref]

  • [30] Palumbi S.R., Martin A., Romano S., McMillian W.O., Stice L., Grabowski G. 1991. The simple fool’s guide to PCR. A collection of PCR protocols, version 2. University of Hawaii, Honolulu, USA.

  • [31] Parker R.R. 1969. Validity of the binomen Caligus elongatus for a common parasitic copepod formerly misidentified with Caligus rapax. Journal of the Fisheries Research Board of Canada, 26, 1013–1035. [Crossref]

  • [32] Piasecki W. 1996. The developmental stages of Caligus elongatus von Nordmann, 1832 (Copepoda: Caligidae). Canadian Journal of Zoology, 74, 1459–1478. [Crossref]

  • [33] Posada D., Buckley T.R. 2004. Model selection and model averaging in phylogenetics: Advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53, 793–808. DOI: 10.1080/10635150490522304. http://dx.doi.org/10.1080/10635150490522304 [Crossref]

  • [34] Posada D., Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818. http://dx.doi.org/10.1093/bioinformatics/14.9.817

  • [35] Schram T.A., Knutsen J.A., Heuch P.A., Mo T.A. 1998. Seasonal occurrence of Lepeophtheirus salmonis and Caligus elongatus (Copepoda: Caligidae) on sea trout (Salmo trutta), off southern Norway. ICES Journal of Marine Science, 55, 163–175. DOI: 10.1006/jmsc.1997.0357. http://dx.doi.org/10.1006/jmsc.1997.0357 [Crossref]

  • [36] Shao R., Barker S.C. 2007. Mitochondrial genomes of parasitic arthropods: implications for studies of population genetics and evolution. Parasitology, 134, 153–167. DOI: 10.1017/S0031182006001429. http://dx.doi.org/10.1017/S0031182006001429 [Crossref] [Web of Science]

  • [37] Swofford D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). (Version 4b). Sunderland, Massachusetts, Sinauer Associates.

  • [38] Tjensvoll K. 2006. Studies on the mitochondrial genome and rDNA genes from the salmon louse, Lepeophtheirus salmonis. PhD Thesis, University of Bergen, Norway.

  • [39] Tjensvoll K., Glover K.A., Nylund A. 2006. Sequence variation in four mitochondrial genes of the salmon louse Lepeophtheirus salmonis. Diseases of Aquatic Organisms, 68, 251–259. DOI: 10.3354/dao068251. http://dx.doi.org/10.3354/dao068251 [Crossref]

  • [40] Tjensvoll K., Hodneland K., Nilsen F., Nylund A. 2005. Genetic characterization of the mitochondrial DNA from Lepeophtheirus salmonis (Crustacea: Copepoda). Anew gene organization revealed. Gene, 353, 218–230. DOI: 10.1016/j.gene.2005.04.033. http://dx.doi.org/10.1016/j.gene.2005.04.033 [Crossref]

  • [41] Walter T.C. 2005. World of copepods. Smithsonian Institution National Museum of Natural History, www.nmnh.si.edu/iz/copepod, version 1/2006.

  • [42] Waugh J. 2007. DNA barcoding in animal species: Progress, potential and pitfalls. BioEssays, 29, 188–197. DOI: 10.1002/bies.20529. http://dx.doi.org/10.1002/bies.20529 [Web of Science] [Crossref]

About the article

Published Online: 2008-04-07

Published in Print: 2008-03-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-008-0002-2. Export Citation

© 2008 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Gabriela Munoz, Mauricio F. Landaeta, Pamela Palacios-Fuentes, Zambra Lopez, and Maria Teresa Gonzalez
Folia Parasitologica, 2015, Volume 62
[4]
Francisco Neptalí Morales-Serna, Carlos Daniel Pinacho-Pinacho, Samuel Gómez, and Gerardo Pérez-Ponce de León
Parasitology International, 2014, Volume 63, Number 1, Page 69
[5]
Balu Alagar Venmathi Maran, Seong Yong Moon, Susumu Ohtsuka, Sung-Yong Oh, Ho Young Soh, Jung-Goo Myoung, Anna Iglikowska, and Geoffrey Allan Boxshall
Parasite, 2013, Volume 20, Page 15
[6]
Motoshige Yasuike, Jong Leong, Stuart G. Jantzen, Kristian R. von Schalburg, Frank Nilsen, Simon R. M. Jones, and Ben F. Koop
Marine Biotechnology, 2012, Volume 14, Number 2, Page 155
[8]
B.F. Nowak, C.J. Hayward, L. González, N.J. Bott, and R.J.G. Lester
Aquaculture, 2011, Volume 320, Number 3-4, Page 171
[9]
Simon R. M. Jones and Gina Prosperi-Porta
Journal of Parasitology, 2011, Volume 97, Number 3, Page 399

Comments (0)

Please log in or register to comment.
Log in