Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 53, Issue 4


Myxobolus species infecting the cartilaginous rays of the gill filaments in cyprinid fishes

Kálmán Molnár / Gábor Cech / Csaba Székely
Published Online: 2008-10-29 | DOI: https://doi.org/10.2478/s11686-008-0054-3


During a survey on myxosporean parasites of cyprinid fishes in Hungary, Myxobolus infections were found in the cartilaginous rays of the gill filaments in roach (Rutilus rutilus) and bleak (Alburnus alburnus). Myxobolus spp. causing the infections were studied by morphological, histological and molecular methods. Small plasmodia surrounded by chondrocytes contained relatively few spores which differed from each other and from the known Myxobolus spp. both in their morphology and 18S rDNA sequences. Both species, described as M. feisti sp. nov. and M. susanlimae sp. nov., are characterised by a specific cartilaginous histotropism.

Keywords: Myxozoa; new species; histology; site selection; molecular phylogeny

  • [1] Eszterbauer E. 2004. Genetic relationship among gill-infecting Myxobolus species (Myxosporea) of cyprinids: molecular evidence of importance of tissue-specificity. Diseases of Aquatic Organisms, 58, 35–40. DOI: 10.3354/dao058035. http://dx.doi.org/10.3354/dao058035CrossrefPubMedGoogle Scholar

  • [2] Eszterbauer E., Székely Cs. 2004. Molecular phylogeny of the kidney-parasitic Sphaerospora renicola from common carp (Cyprinus carpio) and Sphaerospora sp. from goldfish (Carassius auratus auratus). Acta Veterinaria Hungarica, 52, 469–478. http://dx.doi.org/10.1556/AVet.52.2004.4.9Web of ScienceCrossrefGoogle Scholar

  • [3] Hall T.A. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98. Google Scholar

  • [4] Hillis D.M., Dixon T. 1991. Ribosomal DNA: Molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 411–453. DOI: 10.1086/417338. http://dx.doi.org/10.1086/417338CrossrefGoogle Scholar

  • [5] Hoffman G.L., Dunbar C.E., Bradford A. 1962. Whirling disease of trout caused by Myxosoma cerebralis in the United States. Specific Scientific Reports. Fish No. 427, 15 pp. Google Scholar

  • [6] Longshaw M., Frear P., Feist S.W. 2003. Myxobolus buckei sp. n. (Myxozoa), a new pathogenic parasite from the spinal column of three cyprinid fishes from the United Kingdom. Folia Parasitologica, 50, 251–262. http://dx.doi.org/10.1159/000075180CrossrefGoogle Scholar

  • [7] Molnár K. 1994. Comments on the host, organ and tissue specificity of fish myxosporeans and on the types of their intrapiscine development. Parasitologica Hungarica, 27, 5–20. Google Scholar

  • [8] Molnár K., Eszterbauer E., Székely Cs., Dán Á., Harrach B. 2002. Morphological and molecular biological studies on intramuscular Myxobolus spp. of cyprinid fish. Journal of Fish Diseases, 25, 643–652. DOI: 10.1046/j.1365-2761.2002.00409.x. http://dx.doi.org/10.1046/j.1365-2761.2002.00409.xCrossrefGoogle Scholar

  • [9] Nowak B., Bruno D., Bryan J. 2001. EAFP. Histopathology Workshops: Notes and Images. Aqua Education; www.aqua.southcom.com.au. Google Scholar

  • [10] Schäperclaus W. 1931. Die Drehkrankheit in der Forellenzucht und ihre Bekämpfung. Zeitschrift für Fischerei, 29, 521–567. Google Scholar

  • [11] Swofford D.L. 2000. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. Google Scholar

  • [12] Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599. DOI: 10.1093/molbev/msm092. http://dx.doi.org/10.1093/molbev/msm092Google Scholar

  • [13] Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. DOI: 10.1093/nar/22.22.4673. http://dx.doi.org/10.1093/nar/22.22.4673CrossrefGoogle Scholar

About the article

Published Online: 2008-10-29

Published in Print: 2008-12-01

Citation Information: Acta Parasitologica, Volume 53, Issue 4, Pages 330–338, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-008-0054-3.

Export Citation

© 2008 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Csaba Székely, Muhammad Hafiz Borkhanuddin, Gábor Cech, Olga Kelemen, and Kálmán Molnár
Parasitology Research, 2014, Volume 113, Number 8, Page 2817
Jorge Costa Eiras, Jinyong Zhang, and Kálman Molnár
Systematic Parasitology, 2014, Volume 88, Number 1, Page 11
Kálmán Molnár, Gábor Cech, and Csaba Székely
Acta Veterinaria Hungarica, 2012, Volume 60, Number 1, Page 69
Matt J. Griffin and Andrew E. Goodwin
Journal of Parasitology, 2011, Volume 97, Number 3, Page 493
Kálmán Molnár, Szilvia Marton, Csaba Székely, and Edit Eszterbauer
Parasitology Research, 2010, Volume 107, Number 5, Page 1137

Comments (0)

Please log in or register to comment.
Log in