Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 54, Issue 4


Occurrence of haemosporidian parasites in the paddyfield warbler, Acrocephalus agricola (Passeriformes, Sylviidae)

Pavel Zehtindjiev / Mihaela Ilieva / Asta Križanauskienė / Olga Oparina
  • A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Saratov Branch, 24 Rabochaya Street, 410028, Saratov, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mihail Oparin
  • A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Saratov Branch, 24 Rabochaya Street, 410028, Saratov, Russia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Staffan Bensch
Published Online: 2009-10-01 | DOI: https://doi.org/10.2478/s11686-009-0052-0


The blood parasite diversity was studied in paddyfield warblers (Acrocephalus agricola) breeding in NE Bulgaria, SW Russia and S. Kazakhstan. Nine cytochrome b gene lineages were recorded, 4 belonging to Haemoproteus spp. and 5 to Plasmodium spp. The overall prevalence of haemosporidians was 33.3%. The composition of parasites varied geographically, with six lineages recorded in Russia, five lineages in Bulgaria and two lineages in Kazakhstan. Two lineages are described for the first time, i.e. ACAGR1 (belonging to Plasmodium sp. and recorded from a single bird in Russia) and ACAGR2 (belonging to Haemoproteus sp., recorded from Bulgaria and Russia). The latter lineage is the most widespread parasite in the Bulgarian population, scarce in Russia and absent in Kazakhstan. It is supposed that ACAGR2 has originated from the widespread lineage ACDUM1 differing from it by a single nucleotide. One lineage only (ACDUM2) occurs in all the three populations studied and is a nonspecific parasite known from various passerines. Six of the registered lineages have been found in a single population of A. agricola and also represent non-specific parasites occurring in a wide range of passerine birds. Their records in A. agricola may indicate the high transmission rate of these parasites in the habitats where this host co-occurs with other passerines. The variation of the composition of the haemosporidian parasite communities through the breeding range of A. agricola makes up heterogeneous selection pressures that may drive intraspecific variation in important life-history traits.

Keywords: Plasmodium; Haemoproteus; cytochrome b lineages; parasite community; geographical variation

  • [1] Able K.P., Belthoff J.R. 1998. Rapid ‘evolution’ of migratory behaviour in the introduced house finch of eastern North America. Proceedings of the Royal Society of London, Ser. B, 265, 2063–2071. DOI: 10.1098/rspb.1998.0541. http://dx.doi.org/10.1098/rspb.1998.0541CrossrefGoogle Scholar

  • [2] Beadell J.S., Ishtiaq F., Covas R., Melo M., Warren B.H., Atkinson C.T., Bensch S., Graves G.R., Jhala Y.V., Peirce M.A., Rahmani A.R., Fonseca D.M., Fleischer R.C. 2006. Global phylogeographic limits of Hawaii’s avian malaria. Proceedings of the Royal Society of London, Ser. B, 273, 2935–2944. DOI:10.1098/rspb.2006.3671. http://dx.doi.org/10.1098/rspb.2006.3671CrossrefGoogle Scholar

  • [3] Bensch S., Åkesson S. 2003. Temporal and spatial variation of hematozoans in Scandinavian willow warblers. Journal of Parasitology, 89, 388–391. DOI: 10.1645/0022-3395(2003)089[0388:TASVOH]2.0.CO;2. http://dx.doi.org/10.1645/0022-3395(2003)089[0388:TASVOH]2.0.CO;2CrossrefGoogle Scholar

  • [4] Bensch S., Hellgren O., Pérez-Tris J. 2009. MalAvi: A public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Molecular Ecology Resources, in press. DOI: 10.1111/j.1755-0998.2009.02692.x. CrossrefWeb of ScienceGoogle Scholar

  • [5] Bensch S., Pérez-Tris J., Waldenström J., Hellgren O. 2004. Linkage between nuclear and mitochondrial DNA sequences in avian malaria parasites: multiple cases of cryptic speciation? Evolution, 58, 1617–1621.10.1111/j.0014-3820.2004.tb01742.x. CrossrefGoogle Scholar

  • [6] Bensch S., Stjernman M., Hasselquist D., Ostman O., Hansson B., Westerdahl H., Pinheiro R.T. 2000. Host specificity in avian blood parasites: a study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proceedings of the Royal Society of London, Ser. B, 267, 1583–1589.10.1098/rspb.2000.1181. http://dx.doi.org/10.1098/rspb.2000.1181Google Scholar

  • [7] Berthold P., Helbig A.J., Mohr G., Querner U. 1992. Rapid microevolution of migratory behaviour in a wild bird species. Nature, 360, 668–669. DOI: 10.1038/360668a0. http://dx.doi.org/10.1038/360668a0CrossrefGoogle Scholar

  • [8] Cramp S. 1992. Handbook of the birds of Europe, the Middle East and North Africa. Vol. VI. Oxford University Press, Oxford, UK, 146–155. Google Scholar

  • [9] Dontschev S. 1970. Der Feldrohrsänger — Acrocephalus agricola (Jerdon, 1845) — eine neue Art für die Bulgarische Vogelfauna. Bulletin de l’Institut de Zoologie et Musée, 32, 181–183 (In Bulgarian). Google Scholar

  • [10] Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor v. 5.0.9. Nucleic Acids Symposium Series, 41, 95–98. Google Scholar

  • [11] Hellgren O., Waldenström J., Bensch S. 2004. A new PCR assay for simultaneous studies of Leucocytozoon spp., Plasmodium spp. and Haemoproteus spp. from avian blood. Journal of Parasitology, 90, 797–802. DOI: 10.1645/GE-184R1. http://dx.doi.org/10.1645/GE-184R1CrossrefGoogle Scholar

  • [12] Kumar S., Tamura K., Nei M. 2004. MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163. DOI:10.1093/bib/5.2.150. http://dx.doi.org/10.1093/bib/5.2.150CrossrefGoogle Scholar

  • [13] Losos J.B., Warheitt K.I., Schoener T.W. 1997. Adaptive differentiation following experimental island colonization in Anolis lizards. Nature, 387, 70–73. DOI: 10.1038/387070a0. http://dx.doi.org/10.1038/387070a0CrossrefGoogle Scholar

  • [14] Nadler T., Ihle U. 1988. Beobachtungen am Feldrohrsager Acrocephalus agricola in Bulgarien. Limicola, 2, 204–217. Google Scholar

  • [15] Orr M.R., Smith T.B. 1998. Ecology and speciation. Trends in Ecology and Evolution, 13, 502–506. DOI: 10.1016/S0169-5347(98)01511-0. http://dx.doi.org/10.1016/S0169-5347(98)01511-0CrossrefGoogle Scholar

  • [16] Palinauskas V., Kosarev V., Shapoval A., Bensch S., Valkiūnas G. 2007. Comparison of mitochondrial cytochrome b lineages and morphospecies of two avian malaria parasites of the subgenera Haemamoeba and Giovannolaia (Haemosporida: Plasmodiidae). Zootaxa, 1626, 39–50. Google Scholar

  • [17] Paspaleva M., Talpeanu M. 1980. Considèrations sur les populations de passèriformes du delta du Danube. I. Populations de passèriformes des roselières. Travers du Museum da Histoire Naturale Grigore Antipa, 21, 227–248. Google Scholar

  • [18] Perez-Tris J., Bensch S., Carbonell R., Helbig A.J., Tellería J.L. 2004. Historical diversification of migration patterns in a passerine bird. Evolution, 58, 1819–1832. DOI: 10.1554/03-731. http://dx.doi.org/10.1554/03-731CrossrefGoogle Scholar

  • [19] Reullier J., Pérez-Tris J., Bensch S., Secondi J. 2006. Diversity, distribution and exchange of blood parasites meeting at an avian moving contact zone. Molecular Ecology, 15, 753–763. DOI: 10.1111/j.1365-294X.2005.02826.x. http://dx.doi.org/10.1111/j.1365-294X.2005.02826.xCrossrefGoogle Scholar

  • [20] Richardson D.S., Jury F.L., Blaakmeer K., Komdeur J., Burke T. 2001. Parentage assignment and extra-group paternity in a cooperative breeder: the Seychelles warbler (Acrocephalus sechellensis). Molecular Ecology, 10, 2263–2273. DOI:10.1046/j.0962-1083.2001.01355.x. http://dx.doi.org/10.1046/j.0962-1083.2001.01355.xCrossrefGoogle Scholar

  • [21] Valkiūnas G. 2001. Practical importance of parasitic diseases: An outlook from the point of view of ecological parasitology. Ekologiya, no. 3, 28–32. Google Scholar

  • [22] Valkiūnas G., Iezhova T.A. 2001. A comparison of the blood parasites in three subspecies of the Yellow Wagtail Motacilla flava. Journal of Parasitology, 87, 930–934. DOI: 10.1645/0022-3395(2001)087[0930:ACOTBP]2.0.CO;2. http://dx.doi.org/10.1645/0022-3395(2001)087[0930:ACOTBP]2.0.CO;2CrossrefGoogle Scholar

  • [23] Valkiūnas G., Iezhova T.A., Krizanauskiene A., Palinauskas V., Sehgal R.N., Bensch S. 2008. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. Journal of Parasitology, 94, 1395–1401. DOI: 10.1645/GE-1570.1. http://dx.doi.org/10.1645/GE-1570.1CrossrefWeb of ScienceGoogle Scholar

  • [24] Valkiūnas G., Zehtindjiev P., Dimitrov D., Krizanauskiene A., Iezhova T.A., Bensch S. 2007. Polymerase chain reaction-based identification of Plasmodium (Huffia) elongatum, with remarks on species identity of haemosporidian lineages deposited in GenBank. Parasitology Research, 102, 1185–1193. DOI: 10.1007/s00436-008-0892-9. http://dx.doi.org/10.1007/s00436-008-0892-9Web of ScienceCrossrefGoogle Scholar

  • [25] Voinstvenskiy M. 1960. The birds of the steppe zone of the European part of the USSR. Publishing House of Ukrainian SSR Academy of Sciences, Kiev, 1–292 (In Russian). Google Scholar

  • [26] Waldenström J., Bensch S., Hasselquist D., Ostman O. 2004. A new nested polymerase chain reaction method very efficient in detecting Plasmodium and Haemoproteus infections from avian blood. Journal of Parasitology, 90, 191–194. DOI: 10.1645/GE-3221RN. http://dx.doi.org/10.1645/GE-3221RNCrossrefGoogle Scholar

  • [27] Waldenström J., Bensch S., Kiboi S., Hasselquist D., Ottosson U. 2002. Cross-species infection of blood parasites between resident and migratory songbirds in Africa. Molecular Ecology, 11, 1545–1554. DOI: 10.1046/j.1365-294X.2002.01523.x. http://dx.doi.org/10.1046/j.1365-294X.2002.01523.xCrossrefGoogle Scholar

  • [28] Westerdahl H., Waldenström J., Hansson B., Hasselquist D., von Schantz T., Bensch S. 2005. Associations between malaria and MHC genes in a migratory songbird. Proceedings of the Royal Society of London, Ser. B, 272, 1511–1518. DOI: 10.1098/rspb.2005.3113. http://dx.doi.org/10.1098/rspb.2005.3113CrossrefGoogle Scholar

  • [29] Zehtindjiev P., Ilieva M., Westerdahl H., Hansson B., Valkiūnas G., Bensch S. 2008. Dynamics of parasitemia of malaria parasites in a naturally and experimentally infected migratory songbird, the great reed warbler Acrocephalus arundinaceus. Experimental Parasitology, 119, 99–110. DOI:10.1016/j.exppara.2007.12.018. http://dx.doi.org/10.1016/j.exppara.2007.12.018CrossrefWeb of ScienceGoogle Scholar

About the article

Published Online: 2009-10-01

Published in Print: 2009-12-01

Citation Information: Acta Parasitologica, Volume 54, Issue 4, Pages 295–300, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-009-0052-0.

Export Citation

© 2009 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Leila Nourani, Mansour Aliabadian, Omid Mirshamsi, Navid Dinparast Djadid, and Georges Snounou
PLOS ONE, 2018, Volume 13, Number 11, Page e0206638
Peter Shurulinkov, Lachezar Spasov, Georgi Stoyanov, and Nayden Chakarov
Malaria Journal, 2018, Volume 17, Number 1
ER Schoener, M Banda, L Howe, IC Castro, and MR Alley
New Zealand Veterinary Journal, 2014, Volume 62, Number 4, Page 189
P. Synek, T. Albrecht, M. Vinkler, J. Schnitzer, J. Votýpka, and P. Munclinger
Parasitology Research, 2013, Volume 112, Number 4, Page 1667

Comments (0)

Please log in or register to comment.
Log in