Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 55, Issue 1 (Mar 2010)

Issues

Temporal variation in prevalence and cercarial development of Echinostephilla patellae (Digenea, Philophthalmidae) in the intertidal gastropod Patella vulgata

Katrin Prinz
  • Department of Zoology, Ecology and Plant Science, University College Cork, Distillery Fields, North Mall, Cork, Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thomas Kelly
  • Department of Zoology, Ecology and Plant Science, University College Cork, Distillery Fields, North Mall, Cork, Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ruth O’Riordan
  • Department of Zoology, Ecology and Plant Science, University College Cork, Distillery Fields, North Mall, Cork, Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sarah Culloty
  • Department of Zoology, Ecology and Plant Science, University College Cork, Distillery Fields, North Mall, Cork, Ireland
  • Aquaculture and Fisheries Development Centre, University College Cork, Distillery Fields, North Mall, Cork, Ireland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2010-02-03 | DOI: https://doi.org/10.2478/s11686-010-0002-x

Abstract

The trematode Echinostephilla patellae is an abundant but scarcely investigated parasite found in coastal ecosystems of the British Isles. Redial and cercarial stages of the digenean occur in the digestive gland and gonads of common limpets Patella vulgata. Here, we present data on the temporal distribution of E. patellae infections in P. vulgata from an intertidal site on the Irish south coast as well as on the intramolluscan development of the cercariae over a period of one year. Prevalence of infection showed temporal variation with a distinct peak in September, possibly related to an increase in the abundance of bird final hosts coinciding with comparatively high temperatures at the study locality during the summer months. Maturation of cercarial stages was strongly correlated with water temperature. Whilst fully developed cercariae were present in the rediae from May to November, large numbers of infective stages occurred in the limpets’ mantle blood vessels — where they accumulate prior to release — between June and September, suggesting this period of time to be the main transmission window for E. patellae cercariae.

Keywords: Trematodes; common limpet; cercarial development; seasonality; infection patterns

  • [1] Ataev G.L. 1991. Temperature influence on the development and biology of rediae and cercariae of Philophthalmus rhionica (Trematoda). Parazitologiya, 25, 349–359 (In Russian). Google Scholar

  • [2] Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583. DOI: 10.2307/3284227. http://dx.doi.org/10.2307/3284227CrossrefGoogle Scholar

  • [3] Christensen N.Ø., Nansen P., Frandsen F. 1976. The influence of temperature on the infectivity of Fasciola hepatica miracidia to Lymnaea truncatula. Journal of Parasitology, 62, 698–701. DOI: 10.2307/3278944. http://dx.doi.org/10.2307/3278944CrossrefGoogle Scholar

  • [4] Copeland M.R., Montgomery W.I., Hanna R.E.B. 1987. Ecology of a digenean infection, Cercaria patellae in Patella vulgata near Portavogie Harbour, Northern Ireland. Journal of Helminthology, 61, 315–328. DOI: 10.1017/S0022149X00010245. http://dx.doi.org/10.1017/S0022149X00010245CrossrefGoogle Scholar

  • [5] Crewe W. 1951. The occurrence of Cercaria patellae Lebour (Trematoda) and its effects on the host; with notes on some other helminth parasites of British limpets. Parasitology, 41, 15–22. DOI: 10.1017/S003118200001653X. http://dx.doi.org/10.1017/S003118200001653XCrossrefGoogle Scholar

  • [6] Ekaratne S.U.K., Crisp D.J. 1982. Tidal micro-growth bands in intertidal gastropod shells, with an evaluation of band-dating techniques. Proceedings of the Zoological Society of London B, 214, 305–323. DOI: 10.1098/rspb.1982.0013. http://dx.doi.org/10.1098/rspb.1982.0013CrossrefGoogle Scholar

  • [7] Esch G.W., Fernandez J.C. 1994. Snail-trematode interactions and parasite community dynamics in aquatic systems: a review. American Midland Naturalist, 131, 209–237. DOI: 10.2307/2426248. http://dx.doi.org/10.2307/2426248CrossrefGoogle Scholar

  • [8] Field L.C., Irwin S.W.B. 1999. Digenean larvae in Hydrobia ulvae from Belfast Lough (Northern Ireland) and the Ythan Estuary (north-east Scotland). Journal of the Marine Biological Association of the United Kingdom, 79, 431–435. DOI: 10.1017/S0025315498000551. http://dx.doi.org/10.1017/S0025315498000551CrossrefGoogle Scholar

  • [9] Fingerut J.T., Zimmer C.A., Zimmer R.K. 2003. Patterns and processes of larval emergence in an estuarine parasite system. Biological Bulletin, 205, 110–120. DOI: 10.2307/1543232. http://dx.doi.org/10.2307/1543232CrossrefGoogle Scholar

  • [10] Fredensborg B.L., Mouritsen K.N., Poulin R. 2006. Relating bird host distribution and spatial heterogeneity in trematode infections in an intertidal snail — from small to large scale. Marine Biology, 149, 275–283. DOI: 10.1007/s00227-005-01 84-1. http://dx.doi.org/10.1007/s00227-005-0184-1CrossrefGoogle Scholar

  • [11] Gorbushin A.M. 1997. Field evidence of trematode-induced gigantism in Hydrobia spp. (Gastropoda: Prosobranchia). Journal of the Marine Biological Association of the United Kingdom, 77, 785–800. DOI: 10.1017/S0025315400036195. http://dx.doi.org/10.1017/S0025315400036195CrossrefGoogle Scholar

  • [12] Hechinger R.F., Lafferty K.D. 2005. Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proceedings of the Royal Society of London B, 272, 1059–1066. DOI: 10.1098/rspb.2005.3070. http://dx.doi.org/10.1098/rspb.2005.3070CrossrefGoogle Scholar

  • [13] Hughes R.N., Answer P. 1982. Growth, spawning and trematode infection of Littorina littorea (L.) from an exposed shore in North Wales. Journal of Molluscan Studies, 48, 321–330. Google Scholar

  • [14] Huxham M., Raffaelli D., Pike A. 1993. The influence of Cryptocotyle lingua (Digenea: Platyhelminthes) infections on the survival and fecundity of Littorina littorea (Gastropoda: Prosobranchia). Journal of Experimental Marine Biology and Ecology, 168, 223–238. DOI: 10.1016/0022-0981(93)90262-M. http://dx.doi.org/10.1016/0022-0981(93)90262-MCrossrefGoogle Scholar

  • [15] James B.L. 1968. The occurrence of larval Digenea in ten species of intertidal prosobranch molluscs in Cardigan Bay. Journal of Natural History, 2, 329–343. DOI: 10.1080/0022293680077 0351. http://dx.doi.org/10.1080/00222936800770351CrossrefGoogle Scholar

  • [16] Jonsson P.R., André C. 1992. Mass mortality of the bivalve Cerastoderma edule on the Swedish west coast caused by infestation with the digenean trematode Cercaria cerastodermae I. Ophelia, 36, 151–157. CrossrefGoogle Scholar

  • [17] Køie M. 1975. On the morphology and life-history of Opechona bacillaris (Molin, 1859) Looss, 1907 (Trematoda, Lepocreadiidae). Ophelia, 13, 63–86. Google Scholar

  • [18] Kollien A.H. 1996. Cercaria patellae Lebour, 1911 developing in Patella vulgata is the cercaria of Echinostephilla patellae (Lebour, 1911) n. comb. (Digenea, Philophthalmidae). Systematic Parasitology, 34, 11–25. DOI: 10.1007/BF01531206. http://dx.doi.org/10.1007/BF01531206CrossrefGoogle Scholar

  • [19] Kube S., Kube J., Bick A. 2002. Component community of larval trematodes in the mudsnail Hydrobia ventrosa: temporal variations in prevalence in relation to host life history. Journal of Parasitology, 88, 730–737. DOI: 10.1645/0022-3395(2002)088[0730:CCOLTI]2.0.CO;2. http://dx.doi.org/10.1645/0022-3395(2002)088[0730:CCOLTI]2.0.CO;2CrossrefGoogle Scholar

  • [20] Lafferty K.D., Kuris A.M. 1999. How environmental stress affects the impacts of parasites. Limnology and Oceanography, 44, 925–931. http://dx.doi.org/10.4319/lo.1999.44.3_part_2.0925Google Scholar

  • [21] Lang W.H., Dennis E.A. 1976. Morphology and seasonal incidence of infection of Proctoeces maculatus (Looss, 1901) Odhner, 1911 (Trematoda) in Mytilus edulis L. Ophelia, 15, 65–75. CrossrefGoogle Scholar

  • [22] Lauckner G. 1980. Diseases of Mollusca: Gastropoda. In: (Ed. O. Kinne) Diseases of marine animals. Vol. 1. General aspects, Protozoa to Gastropoda. John Wiley & Sons, New York, 311–424. Google Scholar

  • [23] Lauckner G. 1983. Diseases of Mollusca: Bivalvia. In: (Ed. O. Kinne) Diseases of marine animals. Vol. 2. Introduction, Bivalvia to Scaphopoda. Biologische Anstalt Helgoland, Hamburg, 477–961. Google Scholar

  • [24] Lo C.-T., Lee K.-M. 1996. Pattern of emergence and the effects of temperature and light on the emergence and survival of heterophyid cercariae (Centrocestus formosanus and Haplorchis pumilio). Journal of Parasitology, 82, 347–350. DOI: 10.2307/3284178. CrossrefGoogle Scholar

  • [25] Mouritsen K.N., Poulin R. 2002. Parasitism, community structure and biodiversity in intertidal ecosystems. Parasitology, 124, S101–S117. DOI: 10.1017/S0031182002001476. CrossrefGoogle Scholar

  • [26] Ngo T.T.T., Choi K.S. 2004. Seasonal changes of Perkinsus and Cercaria infections in the Manila clam Ruditapes philippinarum from Jeju, Korea. Aquaculture, 239, 57–68. DOI: 10.1016/j.aquaculture.2004.06.026. http://dx.doi.org/10.1016/j.aquaculture.2004.06.026CrossrefGoogle Scholar

  • [27] Pietrock M., Marcogliese D.J. 2003. Free-living endohelminth stages: at the mercy of environmental conditions. Trends in Parasitology, 19, 293–299. DOI: 10.1016/S1471-4922(03)00117-X. http://dx.doi.org/10.1016/S1471-4922(03)00117-XCrossrefGoogle Scholar

  • [28] Prinz K., Kelly T.C., O’Riordan R.M., Culloty S.C. 2009a. Infection of Mytilus edulis by the trematode Echinostephilla patellae (Digenea: Philophthalmidae). Journal of Helminthology; www.cambridge.org (online). DOI: 10.1017/S0022149X099 90472. CrossrefWeb of ScienceGoogle Scholar

  • [29] Prinz K., Kelly T.C., O’Riordan R.M., Culloty S.C. 2009b. Non-host organisms affect transmission processes in two common trematode parasites of rocky shores. Marine Biology, 156, 2303–2311. DOI: 10.1007/s00227-009-1258-2. http://dx.doi.org/10.1007/s00227-009-1258-2Web of ScienceCrossrefGoogle Scholar

  • [30] Rees F.G. 1934. Cercaria patellae Lebour, 1911, and its effects on the digestive gland and gonads of Patella vulgata. Proceedings of the Zoological Society of London, 45, 45–53. Google Scholar

  • [31] Robson E.M., Williams I.C. 1970. Relationships of some species of Digenea with the marine prosobranch Littorina littorea (L.) I. The occurrence of larval Digenea in L. littorea on the North Yorkshire coast. Journal of Helminthology, 44, 153–168. DOI: 10.1017/S0022149X00021714. http://dx.doi.org/10.1017/S0022149X00021714CrossrefGoogle Scholar

  • [32] Rothschild M. 1942. A seven-year-old infection of Cryptocotyle lingua Creplin in the winkle Littorina littorea L. Journal of Parasitology, 28, 350. DOI: 10.2307/3272976. http://dx.doi.org/10.2307/3272976CrossrefGoogle Scholar

  • [33] Sannia A., James B.L. 1978. The occurrence of Cercaria cerastodermae I Sannia, James, and Bowers, 1978 (Digenea: Monorchiidae) in populations of Cerastoderma edule (L.) from the commercial beds of the Lower Thames Estuary. Zeitschrift für Parasitenkunde, 56, 1–11. DOI: 10.1007/BF00925931. http://dx.doi.org/10.1007/BF00925931CrossrefGoogle Scholar

  • [34] Sindermann C.J. 1990. Principle diseases of marine fish and shellfish. Vol. 2. Diseases of marine shellfish. Academic Press, New York, 516 pp. Google Scholar

  • [35] Sindermann C.J., Farrin A.E. 1962. Ecological studies of Cryptocotyle lingua (Trematoda: Heterophyidae) whose larvae cause “pigment spots” in marine fish. Ecology, 43, 69–75. DOI: 10.2307/1932041. http://dx.doi.org/10.2307/1932041CrossrefGoogle Scholar

  • [36] Sousa W.P. 1983. Host life history and the effect of parasitic castration on growth: a field study of Cerithidea californica Haldeman (Gastropoda: Prosobranchia) and its trematode parasites. Journal of Experimental Marine Biology and Ecology, 73, 273–296. DOI: 10.1016/0022-0981(83)90051-5. http://dx.doi.org/10.1016/0022-0981(83)90051-5CrossrefGoogle Scholar

  • [37] Sousa W.P. 1993. Interspecific antagonism and species coexistence in a diverse guild of larval trematode parasites. Ecological Monographs, 63, 103–128. DOI: 10.2307/2937176. http://dx.doi.org/10.2307/2937176CrossrefGoogle Scholar

  • [38] Thieltges D.W. 2006. Parasite induced summer mortality in the cockle Cerastoderma edule by the trematode Gymnophallus choledochus. Hydrobiologia, 559, 455–461. DOI: 10.1007/s10750-005-1345-4. http://dx.doi.org/10.1007/s10750-005-1345-4CrossrefGoogle Scholar

  • [39] Thieltges D.W., Rick J. 2006. Effect of temperature on emergence, survival and infectivity of cercariae of the marine trematode Renicola roscovita (Digenea: Renicolidae). Diseases of Aquatic Organisms, 73, 63–68. DOI: 10.3354/dao073063. http://dx.doi.org/10.3354/dao073063CrossrefGoogle Scholar

  • [40] Thomas M.L.H. 1965. Observations on the occurrence of Cercaria patellae Lebour in Patella vulgata L. on the Inner Farne. Transactions of the Natural History Society of Northumberland, Durham and Newcastle-upon-Tyne, 15, 140–146. Google Scholar

  • [41] Thomas F., Cezilly F., de Meeûs T., Crivelli A., Renaud F. 1997. Parasitism and ecology of wetlands: a review. Estuaries, 20, 646–654. DOI: 10.2307/1352622. http://dx.doi.org/10.2307/1352622CrossrefGoogle Scholar

  • [42] Upatham E.S. 1973. The effect of water temperature on the penetration and development of St. Lucian Schistosoma mansoni miracidia in local Biomphalaria glabrata. Southeast Asian Journal of Tropical Medicine and Public Health, 4, 367–370. Google Scholar

  • [43] Vanoverschelde R. 1982. Studies on the life-cycle of Himasthla militaris (Trematoda: Echinostomatidae): influence of temperature and salinity on the life-span of the miracidium and the infection of the first intermediate host, Hydrobia ventrosa. Parasitology, 84, 131–135. DOI: 10.1017/S0031182000051726. http://dx.doi.org/10.1017/S0031182000051726CrossrefGoogle Scholar

About the article

Published Online: 2010-02-03

Published in Print: 2010-03-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-010-0002-x.

Export Citation

© 2010 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Louise B. Firth, Lisa M. Grant, Tasman P. Crowe, Jonathan S. Ellis, Christena Wiler, Christopher Convery, and Nessa E. O'Connor
Journal of Experimental Marine Biology and Ecology, 2017, Volume 492, Page 99
[2]
Ana Born-Torrijos, Juan Antonio Raga, and Astrid Sibylle Holzer
Parasitology Research, 2016, Volume 115, Number 2, Page 575
[3]
Kum C. Shim, Janet Koprivnikar, and Mark R. Forbes
Journal of Experimental Marine Biology and Ecology, 2013, Volume 439, Page 61
[4]
Elżbieta Żbikowska and Anna Cichy
Journal of Invertebrate Pathology, 2012, Volume 109, Number 3, Page 269
[5]
Mark R. Forbes, Julia J. Mlynarek, Jane Allison, and Kerry R. Hecker
Parasitology Research, 2012, Volume 110, Number 1, Page 245
[6]
E.M. Koppel, T.L.F. Leung, and R. Poulin
Journal of Helminthology, 2011, Volume 85, Number 02, Page 160

Comments (0)

Please log in or register to comment.
Log in