Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 57, Issue 3

Issues

Status of lipid peroxidation and antioxidant enzymes in goats naturally infected with Babesia ovis

Bijan Esmaeilnejad / Mousa Tavassoli / Siamak Asri-Rezaei / Bahram Dalir-Naghadeh / Hassan Malekinejad
Published Online: 2012-08-09 | DOI: https://doi.org/10.2478/s11686-012-0038-1

Abstract

This study aimed to assess lipid peroxidation and antioxidant enzymes in goats naturally infected with Babesia ovis. Red blood cell count (RBC), hemoglobin (Hb) concentration, packed cell volume (PCV), malondialdehyde (MDA) concentration, erythrocyte superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), catalase (CAT) activities and total antioxidant capacity (TAC) were determined in 15 goats naturally infected with B. ovis as well as same number of healthy goats. The parasitological diagnosis was confirmed using polymerase chain reaction (PCR) analysis by amplifying a partial 18S rRNA gene sequence of B. ovis. Percentage of parasitemia varied from 0.01 to 1%. The activities of erythrocyte GSH-Px, SOD, CAT and TAC were significantly lower (p<0.05) in the infected goats than in healthy ones. MDA concentration in erythrocytes of infected goats was significantly higher in infected goats than in healthy ones (pš0.05). Severity of parasitemia showed a positive correlation with the MDA and negative correlation with PCV, SOD, CAT, GSH-Px and TAC. Also, MDA was negatively correlated with PCV, SOD, CAT, GSH-Px and TAC. The results of this study suggested that oxidative damage to RBCs may contribute to the pathogenesis of anemia in caprine babesiosis.

Keywords: Babesia ovis; goats; oxidative stress; antioxidants; anemia

  • [1] Aktas M., Altay K., Dumanli N. 2005. Development of a polymerase chain reaction method for diagnosis of Babesia ovis infection in sheep and goats. Veterinary Parasitology, 133, 277–281. DOI: 10.1016/j.vetpar.2005.05.057. http://dx.doi.org/10.1016/j.vetpar.2005.05.057CrossrefGoogle Scholar

  • [2] Alkhalil A., Hill D.A., Desai S.A. 2007. Babesia and plasmodia increase host erythrocyte permeability through distinct mechanisms. Cellular Microbiology, 94, 815–860. DOI: 10.1111/j.1462-5822.2006.00834.x. Web of ScienceCrossrefGoogle Scholar

  • [3] Ambawat H.K., Malhotra D.V., Kumar S., Dhar S. 1999. Erythrocyte associated haemato-biochemical changes in Babesia equi infection experimentally produced in donkeys. Veerinary Parasitology, 85, 319–324. DOI: 10.1016/S0304-4017(99)00110-7. http://dx.doi.org/10.1016/S0304-4017(99)00110-7CrossrefGoogle Scholar

  • [4] Argon R.S. 1976. Bovine babesiosis: a review. Veterinary Bulletin, 46, 903–917. Google Scholar

  • [5] Asri-Rezaei S., Dalir-Naghadeh B. 2006. Evaluation of antioxidant status and oxidative stress in cattle naturally infected with Theileria annulata. Veterinary Parasitology, 142, 179–186. DOI: 10.1016/j.vetpar.2006.05.033. http://dx.doi.org/10.1016/j.vetpar.2006.05.033CrossrefWeb of ScienceGoogle Scholar

  • [6] Bicek K., Deger Y., Deger S. 2005. Some biochemical and haematological parameters of sheep infected with Babesia species. YuzuncuYil Universitise Veterinire Fakultisi Dergisi, 16, 33–35. DOI: vfdergi.yyu.edu.tr/archive. Google Scholar

  • [7] Buranakarl C., Trisiriroj M., Pondeenana S., Tungjitpeanpony T., Jarutakanon P., Penchome R. 2009. Relationship between oxidative stress markers and red blood cell characteristics in renal azotemic dogs. Reseach in Veterinary Science, 86, 309–313. DOI: 10.1016/j.rvsc.2008.06.003. http://dx.doi.org/10.1016/j.rvsc.2008.06.003CrossrefGoogle Scholar

  • [8] Callow L.L., Pepper P.R. 1974. Measurement and correlation between fever, changes in the packed cell volume and parasitemia in the evaluation of the susceptibility of cattle to infection with Babesia argentina. Australian Veterinary Journal, 50, 1–5. http://dx.doi.org/10.1111/j.1751-0813.1974.tb09358.xGoogle Scholar

  • [9] Chaudhuri S., Varshney J.P., Patra R.C. 2008. Erythrocytic antioxidant defense, lipid peroxidase level and blood iron, zinc and copper concentrations in dogs naturally infected with Babesia gibsoni. Research in Veterinary Science, 85, 120–124. DOI: 10.1016/j.rvsc.2007.09.001. http://dx.doi.org/10.1016/j.rvsc.2007.09.001Web of ScienceCrossrefGoogle Scholar

  • [10] Chiwakata C.B., Hemmer Ch.J. Dietrich M. 2000. High level of nitric oxide synthase mRNA are associated with increased monocyte count in blood and have a beneficial role in Plasmodium falciparum malaria. Infection and Immunity, 68, 394–399. DOI: 0019-9567/00/$04.00+0. http://dx.doi.org/10.1128/IAI.68.1.394-399.2000Google Scholar

  • [11] Commins M.A., Gooder B.V., Waltisbuhi D.J., Wright I.G. 1988. Babesia bovis: studies of parameters influencing microvascular stasis of infected erythrocytes. Research in Veterinary Science, 44, 226–228. Google Scholar

  • [12] Court R.A., Jackson L.A., Lee R.P. 2001. Elevated anti-parasitic activity in peripheral blood monocytes and neutrophils of cattle infected with Babesia bovis. International Journal for Parasitology, 31, 29–37. DOI: 10.1016/S0020-7519 (00)00 144-2. http://dx.doi.org/10.1016/S0020-7519(00)00144-2CrossrefGoogle Scholar

  • [13] Crnogaj M., Petlevski R., Mrljk V., Kis I., Torti M., Kucer N., Matijatko V., Sacer I., Stokoic I. 2010. Malondialdehyde levels in serum of dogs infected with Babesia canis. Veterinarni Medicina, 55, 163–171. DOI: vri.cz/docs/vetmed/55-4. Google Scholar

  • [14] Deger S., Deger Y., Bicek K., Ozdal N., Gul A. 2009. Status of lipid peroxidation, antioxidant and oxidation products of nitric oxide equine babesiosis: Status of antioxidant and oxidant in equine babesiosis. Journal of Equine Veterinary Science, 29, 743–747. DOI: 10.1016/j.jevs.2009.07.014. http://dx.doi.org/10.1016/j.jevs.2009.07.014Web of ScienceCrossrefGoogle Scholar

  • [15] El-Deeb W.M., Younis E.E. 2009. Clinical and biochemical studies on Theileria annulata in Egyptian buffaloes (Bubalus bubalis) with particular orientation to oxidative stress and ketosis relationship. Veterinary Parasitology, 164, 301–305. DOI: 10.1016/j.vetpar.2009.06.002. http://dx.doi.org/10.1016/j.vetpar.2009.06.002Web of ScienceCrossrefGoogle Scholar

  • [16] Erel O., Kocyigit A., Avci S., Aktepe N., Bulut V. 1997. Oxidative stress and antioxidant status of plasma and erythrocytes in patient with vivax malaria. Clinical Biochemistry, 30, 631–639. DOI: 10.1016/S0009-9120(97)00119-7. http://dx.doi.org/10.1016/S0009-9120(97)00119-7CrossrefGoogle Scholar

  • [17] Estrada-Pena A., Bouattour A., Camicas J.L., Walker A.R. 2004. Ticks of domestic animals in the Mediterranean region, a guide to identification of species. University of Zaragoza, Spain, 43-131 pp. Google Scholar

  • [18] Grewal A., Ahuja C.S., Singh S.P.S., Chaudhary K.C. 2005. Status of lipid peroxidation, some antioxidant enzymes and erythrocytic fragility of crossbred cattle naturally infected with Theileria annulata. Veterinary Research Communications, 29, 387–394. DOI: 10.1007/s11259-005-4682-x. http://dx.doi.org/10.1007/s11259-005-4682-xCrossrefGoogle Scholar

  • [19] Habibi G.R., Hashemi-Fesharki R., Bordbar N. 2004. Detection of Babesia ovis using polymerase chain reaction. Archives of Razi Institute, 57, 1–10. Google Scholar

  • [20] Hafeman D.G., Sunde R.A., Hoekstra W.G. 1974. Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in rat. Journal of Nutrition, 104, 580–587. DOI: 10.1002/jez. 1402250216. CrossrefGoogle Scholar

  • [21] Harvey J.W. 1989. Erythrocyte metabolism. In: (Ed. Kaneko J.J.) Clinical Biochemistry of Domestic Animals. Academic Press, New York, 185–233. Google Scholar

  • [22] Kiral F., Karagenc T., Pasa S., Yenisey C., Seyrek K. 2005. Dogs with Hepatozoon canis respond to oxidative stress by increased production of glutathione and nitric oxide. Veterinary Parasitology, 131, 15–21. DOI: 10.1016/j.vetpar.2005.04.017. http://dx.doi.org/10.1016/j.vetpar.2005.04.017CrossrefGoogle Scholar

  • [23] Kumar A., Varshney J.P., Patra R.C. 2006. A comparative study on oxidative stress in dogs infected with Ehrlichia canis with or without concurrent infection with Babesia gibsoni. Veterinary Research Communications, 30, 917–920. DOI: 10.1007/s11259-006-3365-6. http://dx.doi.org/10.1007/s11259-006-3365-6CrossrefGoogle Scholar

  • [24] Otsuko Y., Yamasaki M., Yamato O., Maede Y. 2001. Increased generation of superoxide in erythrocytes infected with Babesia gibsoni. Journal of Veterinary Medical Science, 63, 1077–1081. DOI: 10.1292/jvms.63.1077. http://dx.doi.org/10.1292/jvms.63.1077CrossrefGoogle Scholar

  • [25] Rahbari S., Nabian S., Khaki Z., Alidadi N., Ashrafihelan J. 2008. Clinical, haematological and pathological aspects of experimental ovine babesiosis in Iran. Iranian Journal of Veterinary Research, 9, 59–64. Google Scholar

  • [26] Razmi G.R., Naghibi A., Aslani M.R., Fathivand M., Dastjerdi K. 2003. An epidemiological study on Babesia infection in small ruminants in Mashhad suburb, Khorasan province, Iran. Small Ruminant Research, 50, 39–44. DOI: 10.1016/s0921-4488 (03)00107. http://dx.doi.org/10.1016/S0921-4488(03)00107-XCrossrefGoogle Scholar

  • [27] Sahoo A., Patra R.C., Pathak N.N., Dwievedi S.K., Dash P.K. 2001. Enhanced lipid peroxide levels in the erythrocytes of calves with haemoglobinuria. Veterinary Research Communications, 25, 55–59. http://dx.doi.org/10.1023/A:1026710002039Google Scholar

  • [28] Saleh M.A. 2009. Erythrocytic oxidative damage in crossbred cattle naturally infected with Babesia bigemina. Research in Veterinary Science, 86, 43–48. DOI: 10.1016/j.rvsc.05.005. http://dx.doi.org/10.1016/j.rvsc.2008.05.005CrossrefWeb of ScienceGoogle Scholar

  • [29] Sevinc F., Turgut K., Sevinc M., Ekici O.D., Coskun A., Koc Y., Erol M., Ica A. 2007. Therapeutic and prophylactic efficacy of imidocarb dipropionate on experimental Babesia ovis infection of lambs. Veterinary Parasitology, 149, 64–71. DOI: 10.1016/j.vetpar.2007.07.014. http://dx.doi.org/10.1016/j.vetpar.2007.07.014CrossrefWeb of ScienceGoogle Scholar

  • [30] Shiono H., Yagi Y., Chikayama Y., Miyazaki Sh., Nakamura I. 2003. Oxidative damage and phosphotidylserine expression of red blood cells in cattle experimentally infected with Theileria sergenti. Parasitology Research, 89, 228–234. DOI: 10.1007/s00436-002-0742-0. CrossrefGoogle Scholar

  • [31] Shoda L.K.M., Palmer G.H., Florin-Christensen J., Florin-Christensen M., Godson D.L., Brown W.C. 2000. Babesia bovis-stimulated macrophages express interleukin-1β, interleukin-12, Tumor necrosis factor alpha, and nitric oxide and inhibit parasite replication in vitro. Infection and Immunity, 68, 5139–5145. DOI: 0019-9567/00/$04.0010. http://dx.doi.org/10.1128/IAI.68.9.5139-5145.2000Google Scholar

  • [32] Stich R.W., Shoda L.K.M., Dreewes M., Alder B., Jungi T.W., Brown W.C. 1998. Stimulation of nitric oxide production in macrophages by Babesia bovis. Infection and Immunity, 66, 4130–3136. DOI: 0019-9567/98/$04.00+0. Google Scholar

  • [33] Uilenberg G. 2006. Babesia-A historical overview. Veterinary Parasitology, 138, 3–10. DOI: 10.1016/j.vetpar.2006.01.035. http://dx.doi.org/10.1016/j.vetpar.2006.01.035CrossrefGoogle Scholar

  • [34] Varshney J.P., Varshney V.P., Oque M. 2003. Clinico-haematological, biochemical, endocrinological and ultrasonographic findings in canine babesiosis. Indian Journal of Animal Science, 73, 1099–1101. Google Scholar

  • [35] Yamasaki M., Otsuka Y., Yamato O., Tajima M., Maede Y. 2000. The cause of the predilection of Babesia gibsoni for reticulocytes. Journal of Veterinary Medical Science, 62, 737–741. DOI: 10.1292/jvms.62.737. http://dx.doi.org/10.1292/jvms.62.737CrossrefGoogle Scholar

About the article

Published Online: 2012-08-09

Published in Print: 2012-09-01


Citation Information: Acta Parasitologica, Volume 57, Issue 3, Pages 228–234, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-012-0038-1.

Export Citation

© 2012 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Ana Cláudia Norte, David Costantini, Pedro Miguel Araújo, Marcel Eens, Jaime Albino Ramos, and Dieter Heylen
Ticks and Tick-borne Diseases, 2018
[2]
Bijan Esmaeilnejad, Mousa Tavassoli, Siamak Asri-Rezaei, Bahram Dalir-Naghadeh, Seyyed Meysam Abtahi Froushani, Jafar Arjmand, and Mostafa Golabi
Tropical Animal Health and Production, 2014, Volume 46, Number 7, Page 1217
[3]
Gulay Ciftci, Kerem Ural, Nuran Aysul, Sena Cenesiz, Murat Guzel, Didem Pekmezci, and Mehtap Ünlü Sogut
Veterinary Parasitology, 2014, Volume 204, Number 3-4, Page 388

Comments (0)

Please log in or register to comment.
Log in