Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 57, Issue 4

Issues

Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis

B. Nath
  • Molecular Pathology Division, Seribiotech Research Laboratory, Central Silk Board, CSB Campus, Carmelram Post, Kodathi, Bangalore, 560035, Karnataka, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ S. Gupta
  • Silkworm Pathology Department, Central Sericultural Research and Training Institute, Central Silk Board, Berhampore, 742101, West Bengal, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ A. Bajpai
  • Silkworm Pathology Department, Central Sericultural Research and Training Institute, Central Silk Board, Berhampore, 742101, West Bengal, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2012-11-06 | DOI: https://doi.org/10.2478/s11686-012-0051-4

Abstract

The life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect.

Keywords: Microsporidia; Nosema; pebrine; disporoblastic development; silkworm; SSU-rRNA

  • [1] Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403–410. CrossrefGoogle Scholar

  • [2] Andreadis T.G. 1983. Life cycle and epizootiology of Amblyospora sp. (Microspora: Amblyosporidae) in the mosquito, Aedes cantator. Journal of Protozoology, 30, 509–518. CrossrefGoogle Scholar

  • [3] Baker M.D., Vossbrinck C.R., Didier E.S., Maddox J.V., Shadduck J.A. 1995. Small subunit ribosomal DNA phylogeny of various microsporidia with emphasis on AIDS related forms. Journal of Eukaryotic Microbiology, 42, 564–570. DOI: 10.1111/j.1550-7408.1995. tb05906.x. http://dx.doi.org/10.1111/j.1550-7408.1995.tb05906.xCrossrefGoogle Scholar

  • [4] Baker M.D., Vossbrinck C.R., Maddox J.V., Undeen A.H. 1994. Phylogenetic relationships among Vairimorpha and Nosema species (Microspora) based on ribosomal RNA sequence data. Journal of Invertebrate Pathology, 64, 100–106. DOI: 10.1006/jipa.1994.1077. http://dx.doi.org/10.1006/jipa.1994.1077CrossrefGoogle Scholar

  • [5] Ball S.J., Pittilo R.M., Joyner L.P., Norton C.C. 1981. Scanning and transmission electron microscopy of Eimeria maxima microgametogenesis. Parasitology, 82, 131–135. DOI: 10.1017/S0031182000041937. http://dx.doi.org/10.1017/S0031182000041937CrossrefGoogle Scholar

  • [6] Becnel J.J., Andreadis T.G. 1999. In: (Eds. W. Murray and M.W. Louis) The Microsporidia and microsporidiosis. Microsporidia in insects. American Society of Microbiology, Washington, DC, USA, 447–501. Google Scholar

  • [7] Becnel J.J., Sprague V., Fukuda T., Hazard E.I. 1989. Development of Edhazardia aedes (Kudo, 1930) N.G.N. Comb (Microsporidia: Amblyosporidae) in the mosquito Aedes aegypti (L.) (Diptera: Culicidae). Journal of Protozoology, 36, 119–130. CrossrefGoogle Scholar

  • [8] Brooks W.M., Cranford J.D. 1972. Microsporidoses of the hymenopterous parasites, Campoletis sonorensis and Cardiochiles nigriceps, larval parasites of Heliothis species. Journal of Invertebrate Pathology, 20, 77–94. http://dx.doi.org/10.1016/0022-2011(72)90085-7CrossrefGoogle Scholar

  • [9] Burges H.D., Canning E.U., Hulls I.K. 1974. Ultrastructure of Nosema oryzaephili and the taxonomic value of the polar filament. Journal of Invertebrate Pathology, 23, 135–139. http://dx.doi.org/10.1016/0022-2011(74)90176-1CrossrefGoogle Scholar

  • [10] Canning E.U., Baker R.J., Page A.M., Nicholas J.P. 1985. Transmission of microsporidia especially Orthosoma operophterae (Canning, 1960) between generations of winter moth Operophtera brumata (L.) (Lepidoptera: Geometridae). Parasitology, 90, 11–19. http://dx.doi.org/10.1017/S0031182000048976CrossrefGoogle Scholar

  • [11] Canning E.U., Curry A., Cheney S., Lafranchi-Tristem N.J., Haque M.A. 1999b. Vairimorpha imperfecta n. sp., a microsporidian exhibiting an abortive octosporous sporogony in Plutella xylostella L. (Lepidoptera: Yponomeutidae). Parasitology, 119, 273–286. http://dx.doi.org/10.1017/S0031182099004734CrossrefGoogle Scholar

  • [12] Canning E.U., Curry A., Cheney S.A., Lafranchi-Tristem N.J., Kawakami Y., Hatakeyama Y., Iwano H., Ishihara R. 1999a. Nosema tyriae n. sp. and Nosema sp., microsporidian parasites of cinnabar moth Tyria jacobaeae. Journal of Invertebrate Pathology, 74, 29–38. DOI: 10.1006/jipa.1999.4861. http://dx.doi.org/10.1006/jipa.1999.4861CrossrefGoogle Scholar

  • [13] Didier E.S., Vossbrinck C.R., Baker M.D., Rogers L.B., Bertucci D.C., Shadduck J.A. 1995. Identification and characterization of three Encephalitozoon cuniculi strains. Parasitology, 111, 411–421. http://dx.doi.org/10.1017/S0031182000065914CrossrefGoogle Scholar

  • [14] Dunn A.M., Terry R.S., Smith J.E. 2001. Transovarial transmission in the microsporidia. Advances in Parasitology, 48, 57–100. http://dx.doi.org/10.1016/S0065-308X(01)48005-5CrossrefGoogle Scholar

  • [15] Dunn A.M., Terry R.S., Taneyhill D.E. 1998. Within host transmission strategies of transovarial, feminizing parasites of Gammarus duebeni. Parasitology, 117, 21–30. http://dx.doi.org/10.1017/S0031182098002753CrossrefGoogle Scholar

  • [16] Fedorko D.P, Nelson N.A., Cartwright C.P. 1995. Identification of microsporidia in stool specimens by using PCR and restriction endonucleases. Journal of Clinical Microbiology, 33, 1739–1741. Google Scholar

  • [17] Finney D.J. 1971. Probit analysis. 3rd edition, Cambridge University Press, London and New York, 333 pp. Google Scholar

  • [18] Fujiwara T. 1979. Infectivity and pathogenicity of Nosema bombycis to larvae of the silkworm. Journal of Sericultural Science Japan, 48, 376–380. Google Scholar

  • [19] Fujiwara T. 1980. Three microsporidians (Nosema spp.) from the silkworm, Bombyx mori. Journal of Sericultural Science Japan, 53, 398–402. Google Scholar

  • [20] Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98NT. Nucleic Acids Symposium Series, 41, 95–98. Google Scholar

  • [21] Hartskeerl R.A., van Gool T., Schuitema A.R., Didier E.S., Terpstra W.J. 1995. Genetic and immunological characterization of the microsporidian Septata intestinalis Cali, Kotler and Orenstein, 1993: reclassification to Encephalitozoon intestinalis. Parasitology, 110, 277–285. DOI: 10.1017/S0031182000080860. http://dx.doi.org/10.1017/S0031182000080860CrossrefGoogle Scholar

  • [22] Hatakeyama Y., Bansal A.K., Iwano H., Kawakami Y., Ishihara R. 2000. Characterization of SSU-rRNA sequence of a new microsporidium Nosema sp. (Nosematidae: Microsporidia), isolated from Antheraea mylitta Drury (Lepidoptera: Saturniidae) in India. Indian Journal of Sericulture, 39, 131–134. Google Scholar

  • [23] Hatakeyama Y., Kawakami Y., Iwano H., Inoue T., Ishihara R. 1997. Analysis and taxonomic inferences of small subunit ribosomal RNA sequence of five microsporidia pathogenic to the silkworm, Bombyx mori. Journal of Sericultural Science Japan, 66, 242–252. Google Scholar

  • [24] Hazard E.I., Oldacre S.W. 1975. Revision of microsporidia (Protozoa) close to Thelohania with descriptions of one new family, eight new genera and thirteen new species. United States Department Agriculture Technical Bulletin, No. 1530, 104. Google Scholar

  • [25] Henry J.E. 1971. Nosema cuneatum sp. n. (Microsporidia: Nosematidae) in Grasshoppers (Orthoptera: Acrididae). Journal of Invertebrate Pathology, 17, 164–171. http://dx.doi.org/10.1016/0022-2011(71)90086-3CrossrefGoogle Scholar

  • [26] Huang W.F., Tsai S.J., Lo C.F., Soichi Y., Wang C.H. 2004. The novel organization and complete sequence of the ribosomal RNA gene of Nosema bombycis. Fungal Genetics and Biology, 41, 473–481. DOI: 10.1016/fgb.2003.12.005. http://dx.doi.org/10.1016/j.fgb.2003.12.005CrossrefGoogle Scholar

  • [27] Hung H.W., Lo C.F., Tseng C.C., Peng S.E., Chou C.M., Kou G.H. 1998. The small subunit ribosomal RNA gene sequence of Pleistophora anguillarum and the use of PCR primers for diagnostic detection of the parasite. Journal of Eukaryotic Microbiology, 45, 556–560. DOI: 10.1111/j.1550-7408.1998.tb05116.x. http://dx.doi.org/10.1111/j.1550-7408.1998.tb05116.xCrossrefGoogle Scholar

  • [28] Ishihara R. 1969. The life cycle of Nosema bombycis as revealed in tissue culture cells of Bombyx mori. Journal of Invertebrate Pathology, 14, 316–320. DOI: 10.1016/0022-2011(69)901 57-8 http://dx.doi.org/10.1016/0022-2011(69)90157-8CrossrefGoogle Scholar

  • [29] Ishihara R., Fujiwara T. 1965. The spread of pebrine within a colony of silkworm, Bombyx mori (Linnaeus). Journal of Invertebrate Pathology, 7, 126–131. http://dx.doi.org/10.1016/0022-2011(65)90023-6CrossrefGoogle Scholar

  • [30] Iwano H., Ishihara R. 1991. Dimorphic development of Nosema bombycis spores in gut epithelium of larvae of the silkworm, Bombyx mori. Journal of Sericultural Science Japan, 60, 249–256. Google Scholar

  • [31] Kawarabata T. 2003. Biology of microsporidians infecting the silkworm, Bombyx mori, in Japan. Journal of Insect Biotechnology and Sericology, 72, 1–32. Google Scholar

  • [32] Kawakami Y., Inoue T., Kikuchi M., Takayanagi M., Sunairi M., Ando T., Ishihara R. 1992. Primary and secondary structures of 5S ribosomal RNA of Nosema bombycis (Nosematidae: Microsporidia). Journal of Sericultural Science Japan, 61, 321–327. Google Scholar

  • [33] Liu H., Pan G., Li T., Huang W., Luo B., Zhou Z. 2011. Ultrastructure, chromosomal karyotype, and molecular phylogeny of a new isolate of microsporidian Vairimorpha sp. BM (Microsporidia: Nosematidae) from Bombyx mori in China. Parasitology Research, Published on line: 03 June 2011. DOI: 10.1007,/s00436-011-2470-9. Google Scholar

  • [34] Maddox J.V., Sprenkel R.K. 1978. Some enigmatic microsporidia of the genus Nosema. Miscellaneous Publications of the Entomological Society of America, 11, 65–84. Google Scholar

  • [35] Malone L.A., McIvor C.A. 1996. Use of nucleotide sequence data to identify a microsporidian pathogen of Pieris rapae (Lepidoptera: Pieridae). Journal of Invertebrate Pathology, 65, 269–273. DOI: 10.1006/jipa.1995.1041. http://dx.doi.org/10.1006/jipa.1995.1041CrossrefGoogle Scholar

  • [36] Mathis A., Michel M., Kuster H., Muller C., Weber R., Deplazes P. 1997. Two Encephalitozoon cuniculi strains of human origin are infectious to rabbits. Parasitology, 114, 29–35. http://dx.doi.org/10.1017/S0031182096008177CrossrefGoogle Scholar

  • [37] Mercer C.F., Wigley P.J. 1987. A microsporidian pathogen of the poroporo stem borer, Sceliodes cordalis (Dbld) (Lepidoptera: Pyralidae): I. Description and identification. Journal of Invertebrate Pathology, 49, 93–101. DOI: 10.1016/0022-2011(87)90130-3. http://dx.doi.org/10.1016/0022-2011(87)90130-3CrossrefGoogle Scholar

  • [38] Muller A., Stellermann K., Hartmann P., Schrappe M., Fatkenheuer G., Salzberger B., Diehl V., Franzen C. 1999. A powerful DNA extraction method and PCR for detection of microsporidia in clinical stool specimens. Clinical and Diagnostic Laboratory Immunology, 6, 243–246. Google Scholar

  • [39] Nageli A. 1857. Ueber die neve krankheit der seidenraupe and verwandte organismen. Botanische Zeitung, 15, 760–761. Google Scholar

  • [40] Rao S.N., Muthulakshmi M., Kanginakudru S., Nagaraju J. 2004. Phylogenetic relationships of three new microsporidian isolates from the silkworm, Bombyx mori. Journal of Invertebrate Pathology, 86, 87–95. DOI: 10.1016/j.jip.2004.05.004. http://dx.doi.org/10.1016/j.jip.2004.05.004CrossrefGoogle Scholar

  • [41] Rao S.N., Nath B.S., Bhuvaneswari G., Urs S.R. 2007. Genetic diversity and phylogenetic relationships among microsporidia infecting the silkworm, Bombyx mori, using random amplification of polymorphic DNA: Morphological and ultrastructural characterization. Journal of Invertebrate Pathology, 96, 193–204. DOI: 10.1016/j.jip.2007.05.001. http://dx.doi.org/10.1016/j.jip.2007.05.001CrossrefGoogle Scholar

  • [42] Rao S.N., Nath B.S., Saratchandra B. 2005. Characterization and phylogenetic relationships among microsporidia infecting silkworm, Bombyx mori, using inter simple sequence repeat (ISSR) and small subunit rRNA (SSU-rRNA) sequence analysis. Genome, 48, 355–366. DOI: 10.1139/g04-109. http://dx.doi.org/10.1139/g04-109CrossrefGoogle Scholar

  • [43] Raynaud L., Delbac F., Broussolle V., Rabodonirina M., Girault V., Wallon M., Cozon G., Vivares C.P., Peyron F. 1998. Identification of Encephalitozoon intestinalis in travelers with chronic diarrhea by specific PCR amplification. Journal of Clinical Microbiology, 36, 37–40. Google Scholar

  • [44] Sato R., Kobayashi M., Watanabe H. 1982. Internal ultrastructure of spores of microsporidians isolated from the silkworm, Bombyx mori. Journal of Invertebrate Pathology, 40, 260–265. DOI: 10.1016/0022-2011(82)90124.0. http://dx.doi.org/10.1016/0022-2011(82)90124-0CrossrefGoogle Scholar

  • [45] Solter S.L. 2006. Transmission as a predictor of ecological host specificity with a focus on vertical transmission of microsporidian. Journal of Invertebrate Pathology, 92, 132–140. http://dx.doi.org/10.1016/j.jip.2006.03.008CrossrefGoogle Scholar

  • [46] Sprague V. 1977. In: (Eds. L.A. Bulla and T.C. Cheng) Classification and phylogeny of the microsporidia. Comparative Pathobiology. Plenum, New York, Vol. 2, 1–30. Google Scholar

  • [47] Sprague V. 1981. In: (Ed. S.P. Parker) Microspora: Synopsis and classification of living organisms. McGraw-Hill, New York, 589–594. Google Scholar

  • [48] Sprague V., Becnel J.J, Hazard E.I. 1992. Taxonomy of phylum microspora. Critical Reviews in Microbiology, 18, 285–395. DOI: 10.3109/10408419209113519. http://dx.doi.org/10.3109/10408419209113519CrossrefGoogle Scholar

  • [49] Swofford D.L. 2001. PAUP* Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates Inc., Sunderland, MA, USA. Google Scholar

  • [50] Takizawa H., Vivier E., Petitprez A. 1975. Recherches cytochimiques sur la microsporidia Nosema bombycis au cours de son development chez le ver a soie (Bombyx mori). Journal of Protozoology, 22, 359–368. CrossrefGoogle Scholar

  • [51] Tamura K., Dudley J., Nei M., Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA), software version 4.0. Molecular Biology and Evolution, 24, 1596–1599. DOI: 10.1093/molbev/msm092. http://dx.doi.org/10.1093/molbev/msm092CrossrefGoogle Scholar

  • [52] Terry R.S., Dunn A.M., Smith J.E. 1997. Cellular distribution of a feminizing microsporidian parasite: a strategy for transovarial transmission. Parasitology, 115, 157–163. http://dx.doi.org/10.1017/S0031182097001236CrossrefGoogle Scholar

  • [53] Terry R.S., Smith J.E., Sharpe R.G., Rigaud T., Littlewood D.T.J., Ironside J.E., Rollinson D., Bouchon D., MacNeil C., Dick J.T.A., Dunn A.M. 2004. Widespread vertical transmission and associated host sex-ratio distortion within the eukaryotic phylum Microspora. Proceedings of the Royal Society of London, B, 271, 1783–1789. http://dx.doi.org/10.1098/rspb.2004.2793CrossrefGoogle Scholar

  • [54] Thompson J.D., Gibson T.J., Plewniak F., Jeanmougin F., Higgins D.G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 25, 4876–4882. DOI: 10.1093/nar/25.24.4876. http://dx.doi.org/10.1093/nar/25.24.4876CrossrefGoogle Scholar

  • [55] Tsai S.J., Lo C.F., Soichi Y., Wang C.H. 2003. The characterization of microsporidian isolates (Nosematidae: Nosema) from five important lepidopteran pests in Taiwan. Journal of Invertebrate Pathology, 83, 51–59. DOI: 10.1016/S0022-2011(03) 00035-1. http://dx.doi.org/10.1016/S0022-2011(03)00035-1CrossrefGoogle Scholar

  • [56] Undeen A.H., Alger N.E. 1971. A density gradient method for fractionating microsporidian spores. Journal of Invertebrate Pathology, 18, 419–420. DOI: 10.1016/0022-2011(71)900 48-6. http://dx.doi.org/10.1016/0022-2011(71)90048-6CrossrefGoogle Scholar

  • [57] Undeen A.H., Cockburn A.F. 1989. The extraction of DNA from microsporidia spores. Journal of Invertebrate Pathology, 54, 132–133. DOI: 10.1016/0022-2011(89)90151-1. http://dx.doi.org/10.1016/0022-2011(89)90151-1CrossrefGoogle Scholar

  • [58] Undeen A.H., Vavra J. 1997. In: (Ed. L. A. Lacey) Research methods for entomopathogenic protozoa. Manual of Techniques in Insect Pathology. Academic Press, San Diego USA, 117–151. Google Scholar

  • [59] Vossbrinck C.R., Baker M.D., Didier E.S., Debrunner-Vossbrinck B.A., Shadduck J.A. 1993. Ribosomal DNA sequences of Encephalitozoon hellem and Encephalitozoon cuniculi: species identification and phylogenetic construction. Journal of Eukaryotic Microbiology, 40, 354–362. DOI: 10.1111/j.1550-7408.1993.tb04928.x. http://dx.doi.org/10.1111/j.1550-7408.1993.tb04928.xCrossrefGoogle Scholar

  • [60] Wang L.L., Chen K.P., Zhang Z., Yao Q., Gao G.T., Zhao Y. 2006. Phylogenetic analysis of Nosema antheraeae (Microsporidia) isolated from Chinese oak silkworm, Antheraea pernyi. Journal of Eukaryotic Microbiology, 53, 330–313. DOI: 10.1111/j.1550-7408.2006.00106.x. http://dx.doi.org/10.1111/j.1550-7408.2006.00106.xCrossrefGoogle Scholar

  • [61] Wittner M., Weiss L.M. 1999. The microsporidia and microsporidiosis. ASM Press, Washington DC, 1–553 pp. Google Scholar

About the article

Published Online: 2012-11-06

Published in Print: 2012-12-01


Citation Information: Acta Parasitologica, Volume 57, Issue 4, Pages 342–353, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-012-0051-4.

Export Citation

© 2012 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Youlu Su, Juan Feng, Xiuxiu Sun, Jingzhe Jiang, Zhixun Guo, Lingtong Ye, and Liwen Xu
Systematic Parasitology, 2014, Volume 89, Number 2, Page 175

Comments (0)

Please log in or register to comment.
Log in