Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 58, Issue 1

Issues

A new genus of the family Hymenolepididae (Cestoda) from Sephanoides sephaniodes (Apodiformes, Trochilidae) in Northern Patagonia (Chile)

Vincent Widmer
  • Department of Invertebrates, Natural History Museum Geneva, PO Box 6434, 1211, Geneva 6, Switzerland
  • Faculty of Sciences, Department of Genetics and Evolution, Geneva University, 30, quai Ernest-Ansermet, 1211, Geneva 4, Switzerland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Boyko Georgiev
  • Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113, Sofia, Bulgaria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jean Mariaux
Published Online: 2013-02-02 | DOI: https://doi.org/10.2478/s11686-013-0117-y

Abstract

A new species of hymenolepidid cestodes from Sephanoides sephaniodes (Trochilidae) found in Chile is described. The most characteristic features of Colibrilepis pusilla gen. nov., sp. nov. are the lack of rostellum, a cirrus sac with a thick-walled distal end (separated by a constriction) and protruding into genital atrium, a thick-walled saccular uterus filling entire median field of the gravid proglottis and the small number of eggs containing thick walled embryophores with polar swellings. Staphylepis is the most similar genus but differs in its apical structure because of the presence of a rudimentary rostellum. Moreover, molecular phylogenetic analyses show that Staphylepis and Colibrilepis are not sister taxa.

Keywords: Hymenolepididae; Hymenolepidinae; Cestoda; Sephanoides sephaniodes; Chile

  • [1] Barker S.C., Blair D., Garrett A.R., Cribb T.H. 1993. Utility of the D1 domain of nuclear 28S rRNA for phylogenetic inference in the Digenea. Systematic Parasitology, 26, 181–188. DOI: 10.1007/BF00009725. http://dx.doi.org/10.1007/BF00009725CrossrefGoogle Scholar

  • [2] Czaplinski B., Vaucher C. 1994. Family Hymenolepididae Ariola, 1899. In: (Eds. Khalil L.F., Jones A., Bray R.A.) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, 595–663. Google Scholar

  • [3] de Chambrier A., Coquille S.C., Mariaux J., Tkach V. 2009. Redescription of Testudotaenia testudo (Magath, 1924) (Eucestoda: Proteocephalidea), a parasite of Apalone spinifera (Le Sueur) (Reptilia: Trionychidae) and Amia calva L. (Pisces: Amiidae) in North America and erection of the Testudotaeniinae n. subfam. Systematic Parasitology, 73, 49–64. http://dx.doi.org/10.1007/s11230-009-9178-6CrossrefWeb of ScienceGoogle Scholar

  • [4] Farris J.S., Källersj of incongruence. Cladistics, 10, 315–319. CrossrefGoogle Scholar

  • [5] Gonzáles-Acuña D., Silva C., Soto M., Mironov S., Moreno L., González-Gómez P.L., Badrul H., Kinsella M. 2011. Parasites of the Green-backed Firecrown (Sephanoides sephaniodes) in Chile. Revista Mexicana de Biodiversidad, 82, 1333–1336. Google Scholar

  • [6] Griebel T., Brinkmeyer M., Bocker S. 2008. EPoS: a modular software framework for phylogenetics analysis. Bioinformatics, 24, 2399–2400. DOI: 10.1093/bioinformatics/btn364. http://dx.doi.org/10.1093/bioinformatics/btn364CrossrefGoogle Scholar

  • [7] Helears R., Milinkovitch M.C. 2010. MetaPIGA v2.0: maximum likelihood large phylogeny estimation using the metapopulation genetic algorithm and other stochastic heuristics. BMC Bioinformatics, 11, 379–390. DOI: 10.1186/1471-2105-11-379. http://dx.doi.org/10.1186/1471-2105-11-379Web of ScienceGoogle Scholar

  • [8] Hillis D.M., Dixon M.T. 1991. Ribosomal DNA: molecular evolution and phylogenetic inference. Quarterly Review of Biology, 66, 411–453. http://dx.doi.org/10.1086/417338CrossrefGoogle Scholar

  • [9] Larkin M.A., Blackshields G., Brown N.P., Chenna R., McGettigan P.A., McWilliam H., Valentin F., Wallace I.M., Wilm A., Lopez R., Thompson J.D., Gibson T.J., Higgins D.G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948. DOI: 10.1093/bioinformatics/btm404. http://dx.doi.org/10.1093/bioinformatics/btm404Web of ScienceGoogle Scholar

  • [10] Lemmon A.R., Milinkovitch M.C. 2002. The metapopulation genetic algorithm: an efficient solution for the problem of large phylogeny estimation. PNAS, 99, 10516–10521. http://dx.doi.org/10.1073/pnas.162224399CrossrefGoogle Scholar

  • [11] Littlewood D.T.J., Waeschenbach A., Nikolov P.N. 2008. In search of mitochondrial markers for resolving the phylogeny of cyclophyllidean tapeworms (Plathyhelminthes, Cestoda) — a test study with Davaineidae. Acta Parasitologica, 53, 133–144. DOI: 10.2478/s11686-008-0029-4. http://dx.doi.org/10.2478/s11686-008-0029-4CrossrefWeb of ScienceGoogle Scholar

  • [12] Mariaux J., Vaucher C. 1991. A new species of Staphylepis Spassky & Oshmarin, 1954 (Cestoda: Hymenolepididae) found in West African nectariniid birds. Revue Suisse de Zoologie, 98, 261–268. Google Scholar

  • [13] Rietschel P.E. 1934. Uber eine neue Hymenolepis aus einem Kolibri. Zugleich ein Beitrag zum Rechts-Links-Problem bei den Cestoden. Zoologischer Anzeiger, 105, 113–123. Google Scholar

  • [14] Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. DOI: 10.1093/bioinformatics/btg180. http://dx.doi.org/10.1093/bioinformatics/btg180CrossrefPubMedGoogle Scholar

  • [15] Schmidt G.D. 1986. CRC Handbook of tapeworm identification. CRC Press Inc., Boca Raton, Florida, 675 pp. Google Scholar

  • [16] Schmidt G.D., Dailey M.D. 1992. Amazilolepis trinidadensis gen n., sp. n. (Cestoidea: Hymenolepididae) from the Copper-rumped Hummingbird, Amazilia tobaci, in Trinidad, West Indies. Journal of the Helminthological Society of Washington, 59, 117–119. Google Scholar

  • [17] Swofford D.L. 2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts. Google Scholar

  • [18] Zehnder M.P., Mariaux J. 1999. Molecular systematic analysis of the order Proteocephalidea (Eucestoda) based on mitochondrial and nuclear sequences. International Journal for Parasitology, 29, 1841–1852. http://dx.doi.org/10.1016/S0020-7519(99)00122-8CrossrefGoogle Scholar

About the article

Published Online: 2013-02-02

Published in Print: 2013-03-01


Citation Information: Acta Parasitologica, Volume 58, Issue 1, Pages 105–111, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-013-0117-y.

Export Citation

© 2013 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[2]
Tian Cheng, Guo-Hua Liu, Hui-Qun Song, Rui-Qing Lin, and Xing-Quan Zhu
Parasitology Research, 2016, Volume 115, Number 3, Page 1253

Comments (0)

Please log in or register to comment.
Log in