Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2018: 1.00

SCImago Journal Rank (SJR) 2018: 0.500
Source Normalized Impact per Paper (SNIP) 2018: 0.664

More options …
Volume 58, Issue 4

Issues

Toxoplasma gondii, Neospora caninum and tick-transmitted bacterium Anaplasma phagocytophilum infections in one selected goat farm in Slovakia

Andrea Čobádiová / Katarina Reiterová / Markéta Derdáková
  • Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 040 01, Košice, Slovak Republic
  • Institute of Zoology of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava — Karlova Ves, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvia Špilovská / Ľudmila Turčeková / Ivana Hviščová / Vladimir Hisira
Published Online: 2013-12-13 | DOI: https://doi.org/10.2478/s11686-013-0171-5

Abstract

Parasitic diseases of livestock together with poor welfare conditions can negatively affect the health status and production of small ruminants. Protozoan parasites and tick-borne infectious agents are common threat of livestock including small ruminants mostly during the pasture season. Therefore the priority of the study was to analyse the circulation and presence of two protozoan parasites Toxoplasma gondii and Neospora caninum as well as tick-transmitted bacterium Anaplasma phagocytophilum in one selected goat farm in Eastern Slovakia. Throughout a three-year study period we have repeatedly screened the sera and blood of goats and dogs from monitored farm. In total, 343 blood serum samples from 116 goats were examined by ELISA. The mean seropositivity for T. gondii was 56.9% (66/116, CI (95%) = 48–66.0) and 15.5% (18/116, CI (95%) = 9.3–22.7) for N. caninum. The permanent occurrence of anti-Toxoplasma and anti-Neospora antibodies was detected in repeatedly examined goats during the whole monitored period. The presence of both parasites in the flock was analysed by PCR. DNA of T. gondii was confirmed in 12 out of 25 Toxoplasma-seropositive goats and N. caninum in 14 samples out of 18 Neospora-seropositive animals; four goats were co-infected with both pathogens. The risk of endogenous transmission of both parasites was pursued by examination of 41 kid’s sera, where seropositivity for toxoplasmosis was 31.7% and for neosporosis 14.6%. In dogs 61.1% seropositivity for T. gondii and 38.9% for N. caninum was found, however, their faeces were negative for coccidian oocysts. Eight out of 108 tested animals were infected with A. phagocytophilum, the causative agent of tick-borne fever. Seven of them were simultaneously infected with T. gondii and A. phagocytophilum, out of which four goats were concurrently infected with all three pathogens.

Keywords: Toxoplasma gondii; Neospora caninum; Anaplasma phagocytophilum; ELISA; PCR; goats; dogs

  • [1] Antonis A.F., Van Knapen F., Dercksen, Jager, P.M. 1998. Toxoplasmosis in goats in the Netherlands: a pilot study. Tijdschrift Voor Diergeneeskunde, 123, 561–565. Google Scholar

  • [2] Bártová E., Sedlák K. 2012. Toxoplasma gondii and Neospora caninum antibodies in goats in the Czech Republic. Veterinární Medicína. 57, 111–114. Google Scholar

  • [3] Courtney J., Kostelnik L., Zeidner N., Massung R. 2004. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. Journal of Clinical Microbiology, 42, 3164–3168. DOI: 10.1128/JCM.42.7.3164-3168.2004. http://dx.doi.org/10.1128/JCM.42.7.3164-3168.2004CrossrefGoogle Scholar

  • [4] Czopowicz M., Kaba J., Szalu’s-Jordanow O., Nowicki M., Witkowski L., Frymus T. 2011. Seroprevalence of Toxoplasma gondii and Neospora caninum infections in goats in Poland. Veterinary Parasitology, 178, 339–341. DOI: 10.1016/j.vetpar. 2011.01.039. http://dx.doi.org/10.1016/j.vetpar.2011.01.039CrossrefGoogle Scholar

  • [5] Derdáková M., Štefančíková A., Špitálska E., Tarageľová V., Košťálová T., Hrkľová G., Kybicová K., Schánilec P., Majláthová V., Várady M., Peťko B. 2011. Emergence and genetic variability of Anaplasma species in small ruminants and ticks from Central Europe. Veterinary Microbiology, 153, 293–298. DOI: 10.1016/j.vetmic.2011.05.044 http://dx.doi.org/10.1016/j.vetmic.2011.05.044Web of ScienceCrossrefGoogle Scholar

  • [6] Dubey J.P., Acland H.M., Hamir A.N. 1992. Neospora caninum (Apicomplexa) in a stillborn goat. Journal of Parasitology, 78, 532–534. http://dx.doi.org/10.2307/3283661Google Scholar

  • [7] Dubey J.P., Carpenter J.L., Speer C.A., Topperrk, M.J., Uggla, A. 1988. Newly recognized fatal protozoan disease of dogs. Journal of the American Veterinary Medical Association, 192, 1269–1285. Google Scholar

  • [8] Dubey J.P., Jenkins M.C., Rajendran C., Miska K., Ferreira L.R., Martins J., Kwok O.C.H., Choudhary S. 2011b. Gray wolf (Canis lupus) is a natural definitive host for Neospora caninum. Veterinary Parasitology, 181, 382–387. DOI: 10.1016/j.vetpar.2011.05.018. http://dx.doi.org/10.1016/j.vetpar.2011.05.018CrossrefWeb of ScienceGoogle Scholar

  • [9] Dubey J.P., Lindsay D.S., 1996. A rewiev of Neospora caninum and neosporosis. Veterinary Parasitology, 67, 1–59. DOI: 10.3347/kjp.2003.41.1.1. http://dx.doi.org/10.1016/S0304-4017(96)01035-7CrossrefGoogle Scholar

  • [10] Dubey J.P., Rajendran C., Ferreira L.R., Martins J., Kwok O.C.H., Hill D.E., Villena I., Zhou, H., Su C., Jones J.L. 2011a. High prevalence and genotypes of Toxoplasma gondii isolated from goats, from a retail meat store, destined for human consumption in the USA. International Journal for Parasitology, 4, 827–833. DOI: 10.1016/j.ijpara.2011.03.006. http://dx.doi.org/10.1016/j.ijpara.2011.03.006CrossrefGoogle Scholar

  • [11] Dumler J.S., Barbet A.F., Bekker C.P., Dasch G.A., Palmer G.H., Ray S.C., Rikihisa Y., Rurangirwa F.R. 2001. Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and ‘HGE agent’ as subjective synonyms of Ehrlichia phagocytophila. International Journal of Systematic and Evolutionary Microbiology, 51, 2145–2165. http://dx.doi.org/10.1099/00207713-51-6-2145Google Scholar

  • [12] Eleni C., Crotti S., Mancieli E., Costarelli, S., Filippini G., Moscati L., Magnino S. 2004. Detection of N. caninum in an aborted goat fetus. Journal of Veterinary Parasitology. 123, 271–274. DOI: 10.1016/j.vetpar.2004.06.017. http://dx.doi.org/10.1016/j.vetpar.2004.06.017CrossrefGoogle Scholar

  • [13] De la Fuente J., Massung R.F., Wong S.J., Chu F.K., Lutz H., Meli M., Loewenich F.D., Grzeszczuk A., Torina A., Caracappa S., Mangold A.J., Naranjo V., Stuen S., Kocan K.M. 2005. Sequence analysis of the msp4 gene of Anaplasma phagocytophilum strains. Journal of Clinical Microbiology, 43, 1309–1317. DOI: 10.1128/JCM.43.3.1309-1317.2005. http://dx.doi.org/10.1128/JCM.43.3.1309-1317.2005CrossrefGoogle Scholar

  • [14] Hutchison W.M., Dunachie J.F., Siim J.C. 1969. Life cycle of Toxoplasma gondii. British Medical Journal, 4(5686), 806. http://dx.doi.org/10.1136/bmj.4.5686.806-bGoogle Scholar

  • [15] Iovu A., Györke A., Mircean V., Gavrea R, Cozma, V. 2012. Seroprevalence of Toxoplasma gondii and Neospora caninum in dairy goats from Romania. Veterinary Parasitology, 186, 470–474. DOI: 10.1016/j.vetpar.2011.11.062. http://dx.doi.org/10.1016/j.vetpar.2011.11.062CrossrefGoogle Scholar

  • [16] Lamoril J., Molina J.M., De Gouvello A., Garin Y.J., Deybach J.C., Modai J., Derouin F. 1996. Detection by PCR of Toxoplasma gondii in blood in the diagnosis of cerebral toxoplasmosis in patients with AIDS. Journal of Clinical Pathology, 49, 89–92. DOI: 10.1136/jcp.49.1.89. http://dx.doi.org/10.1136/jcp.49.1.89CrossrefGoogle Scholar

  • [17] Lindsay D.S., Dubey J.P., Duncan R.B., 1999. Confirmation that the dogs is a definitive host for Neospora caninum. Veterinary Parasitology, 82, 327–333. http://dx.doi.org/10.1016/S0304-4017(99)00054-0Google Scholar

  • [18] Lindsay D.S., Ripper N.S., Powe T.A., Sartin E.A., Dubey J.P., Blagburn B.L. 1995. Abortion, fetal death and stillbirths in prehnant pygmy goats inokulated with tachyzoites of Neospora caninum. American Journal Of Veterinary Research, 56, 1176–1180. Google Scholar

  • [19] Masala G., Porcu R., Madau L., Tanda A, Ibba B, Satta G, Tola S. 2003. Survey of ovine and caprine toxoplasmosis by IFAT and PCR assays in Sardinia, Italy. Veterinary Parasitology, 117, 15–21. DOI: 10.1016/j.vetpar.2003.07.012. http://dx.doi.org/10.1016/j.vetpar.2003.07.012CrossrefGoogle Scholar

  • [20] Neto J.O.A., Azevedo S.S., Gennari S.M., Funada M.R., Pena H.F.J., Araújo A.R.C.P., Batista C.S.A., Silva M.L.C.R., Gomes A.A.B., Piatti R.M., Alves C.J. 2008. Prevalence and risk factors for anti-Toxoplasma gondii antibodies in goats of the Seridó Oriental microregion, Rio Grande do Norte state, Northeast region of Brazil. Veterinary Parasitology, 156, 329–332. DOI: 10.1016/j.vetpar.2008.05.013. http://dx.doi.org/10.1016/j.vetpar.2008.05.013CrossrefGoogle Scholar

  • [21] Petersen E., Lebech M., Jensen L., Lind P., Rask M., Bagger P., Bjorkman C., Uggla A. 1999. Neospora caninum infection and repeated abortions in humans. Emerging Infectious Diseases 5, 278–280. http://dx.doi.org/10.3201/eid0502.990215Google Scholar

  • [22] Reiterová K., Špilovská D., Dubinsky P. 2009. Neospora caninum, potential cause of abortions in dairy cows: the current serological follow-up in Slovakia. Veterinary Parasitology, 159, 1–6. DOI: 10.1016/j.vetpar.2008.10.008. http://dx.doi.org/10.1016/j.vetpar.2008.10.008Web of ScienceCrossrefGoogle Scholar

  • [23] Scott G. R., 1991. Tick-borne infections. In: (Eds. W.B. Martin, I.D. Aitken) Diseases of Sheep. 2nd edition Blackwell Scientific Publications, Oxford, 327–336. Google Scholar

  • [24] Špilovská S., Reiterová K., Kováčová D., Bobáková M., Dubinsky P. 2009. The first finding of Neospora caninum and the occurrence of other abortifacient agents in sheep in Slovakia. Veterinary Parasitology, 164, 320–323. DOI: 10.1016/j.vetpar.2009.05.020. http://dx.doi.org/10.1016/j.vetpar.2009.05.020CrossrefWeb of ScienceGoogle Scholar

  • [25] Spišák F., Turčeková L., Reiterová K., Špilovská S., Dubinský P. 2010. Prevalence estimation and genotypization of Toxoplasma gondii in goats. Biologica. 65, 670–674. DOI:10.2478/s11756-010-0070-2. CrossrefGoogle Scholar

  • [26] Štefančíková A., Derdáková M., Lenčáková D., Ivanová R., Stanko M., Čisláková L., Peťko B. 2008. Serological and molecular detection of Borrelia bugdorferi sensu lato and Anaplasmataceae in rodents. Folia Microbiologica, 53, 493–499. DOI: 10.1007/s12223-008-0077-z. http://dx.doi.org/10.1007/s12223-008-0077-zWeb of ScienceCrossrefGoogle Scholar

  • [27] Štefanidesová K., Kocianová E., Boldiš V., Košťanová Z., Kanka P., Nemethová D., Špitalská E. 2008. Evidence of Anaplasma phagocytophilum and Rickettsia helvetica infection in free-ranging ungulates in central Slovakia. European Journal of Wildlife Research, 54, 519–524. DOI: 10.1007/s10344-007-0161-8. http://dx.doi.org/10.1007/s10344-007-0161-8Web of ScienceCrossrefGoogle Scholar

  • [28] Stuen S. 2007. Anaplasma phagocytophilum — the most widespread tick-borne infection in animals in Europe. Veterinary Research Communications, 31, 79–84. DOI: 10.1007/s11259-007-0071-y. http://dx.doi.org/10.1007/s11259-007-0071-yWeb of ScienceCrossrefGoogle Scholar

  • [29] Víchová B., Majláthová V., Nováková M., Straka M., Peťko B. 2010. First molecular detection of Anaplasma phagocytophilum in European brown bear (Ursus arctos). Vector-Borne and Zoonotic Diseases, 10, 543–545. DOI: 10.1089/vbz.2009.0103. http://dx.doi.org/10.1089/vbz.2009.0103Web of ScienceCrossrefGoogle Scholar

  • [30] Woldehiwet Z. 2010. The natural history of Anaplasma phagocytophilum. Veterinary Parasitology, 167, 108–122. DOI: 10.1016/j.vetpar.2009.09.013. http://dx.doi.org/10.1016/j.vetpar.2009.09.013CrossrefWeb of ScienceGoogle Scholar

  • [31] Yamage M., Flechtner O., Gottstein B. 1996. Neospora caninum: specific oligonucleotide primers for the detection of brain “cyst” DNA of experimentally infected nude mice by the polymerase chain reaction (PCR). Journal of Parasitology, 82, 272–279. DOI: 10.2307/3284160. http://dx.doi.org/10.2307/3284160CrossrefGoogle Scholar

About the article

Published Online: 2013-12-13

Published in Print: 2013-12-01


Citation Information: Acta Parasitologica, Volume 58, Issue 4, Pages 541–546, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-013-0171-5.

Export Citation

© 2013 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
B.M.A. Braz, J.D.M. Valente, E.M.C. Villalobos, M.C.C.S.H. Lara, C.A.L. Machado, I.C. Barbosa, V.S.P. Melo, D.T. Stipp, I.R. Barros-Filho, A.W. Biondo, T.S.W.J. Vieira, and R.F.C. Vieira
Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 2018, Volume 70, Number 1, Page 147
[2]
Bożena Moskwa, Aleksandra Kornacka, Aleksandra Cybulska, Władysław Cabaj, Katarina Reiterova, Marek Bogdaszewski, Żaneta Steiner-Bogdaszewska, and Justyna Bień
Journal of Animal Science, 2018
[3]
Zuoyong Zhou, Yutong Wu, Yiwang Chen, Zhiying Wang, Shijun Hu, Rongqiong Zhou, Chunxia Dong, Hongquan Lin, and Kui Nie
Parasite, 2018, Volume 25, Page 20
[4]
Anamaria I. Paştiu, Daniel Ajzenberg, Adriana Györke, Ovidiu Şuteu, Anamaria Balea, Benjamin M. Rosenthal, Zsuzsa Kalmár, Cristian Domşa, and Vasile Cozma
Journal of Parasitology, 2015, Volume 101, Number 1, Page 45

Comments (0)

Please log in or register to comment.
Log in