Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2018: 1.00

SCImago Journal Rank (SJR) 2018: 0.500
Source Normalized Impact per Paper (SNIP) 2018: 0.664

More options …
Volume 59, Issue 1


Generation of adenosine tri-phosphate in Leishmania donovani amastigote forms

Subhasish Mondal
  • Division of Medicinal Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jay Roy
  • Division of Medicinal Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tanmoy Bera
  • Division of Medicinal Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-26 | DOI: https://doi.org/10.2478/s11686-014-0203-9


Leishmania, the causative agent of various forms of leishmaniasis, is the significant cause of morbidity and mortality. Regarding energy metabolism, which is an essential factor for the survival, parasites adapt to the environment under low oxygen tension in the host using metabolic systems which are very different from that of the host mammals. We carried out the study of susceptibilities to different inhibitors of mitochondrial electron transport chain and studies on substrate level phosphorylation in wild-type L. donovani. The amastigote forms of L. donovani are independent on oxidative phosphorylation for ATP production. Indeed, its cell growth was not inhibited by excess oligomycin and dicyclohexylcarbodiimide, which are the most specific inhibitors of the mitochondrial Fo/F1-ATP synthase. In contrast, mitochondrial complex I inhibitor rotenone and complex III inhibitor antimycin A inhibited amastigote cell growth, suggesting the role of complex I and complex III in cell survival. Complex II appeared to have no role in cell survival. To further investigate the site of ATP production, we studied the substrate level phosphorylation, which was involved in the synthesis of ATP. Succinate-pyruvate couple showed the highest substrate level phosphorylation in amastigotes whereas NADH-fumarate and NADH-pyruvate couples failed to produce ATP. In contrast, NADPH-fumarate showed the highest rate of ATP formation in promastigotes. Therefore, we can conclude that substrate level phosphorylation is essential for the survival of amastigote forms of Leishmania donovani.

Keywords: ATP; Leishmania; amastigote; promastigote; substrate level phosphorylation; oligomycin

  • [1] Assaily W., Benchimol S. 2006. Differential utilization of two ATPgenerating pathways is regulated by p53. Cancer Cell, 10, 4–6. DOI: 10.1016/j.ccr.2006.06.014. http://dx.doi.org/10.1016/j.ccr.2006.06.014CrossrefGoogle Scholar

  • [2] Barak E., Amin-Spector S., Gerliak E., Goyard S., Holland N., Zilberstein D. 2005. Differentiation of Leishmania donovani in host free system: analysis of signal perception and response. Molecular and Biochemical Parasitology, 141, 99–108. DOI: 10.1016/j.molbiopara.2005.02.004. http://dx.doi.org/10.1016/j.molbiopara.2005.02.004CrossrefGoogle Scholar

  • [3] Bente M., Harder S., Wiesgigl M., Heukeshoven J., Gelhous C., Kranse E., Clos J., Bruchhans I. 2003. Developmentally induced changes of the proteome in the protozoan parasite Leishmania donovani. Proteomics, 3, 1811–1829. DOI: 10.1002/pmic.20030046. http://dx.doi.org/10.1002/pmic.200300462CrossrefPubMedGoogle Scholar

  • [4] Chakraborty B., Biswas S., Mondal S., Bera T. 2010. Stage specific developmental changes in the mitochondrial and surface membrane associated redox systems of Leishmania donovani promastigote and amastigote. Biochemistry (Moscow), 75, 494–504. DOI: 10.1134/S0006297910040140. http://dx.doi.org/10.1134/S0006297910040140CrossrefWeb of ScienceGoogle Scholar

  • [5] Chappuis F., Sundar S., Haihe A., Ghalib H., Raijal S. 2007. Visceral Leishmaniasis: What are the needs for diagnosis, treatment and control ? Nature Reviews Microbiology, 5, 873–882. DOI: 10.1038/nrmicro1748. http://dx.doi.org/10.1038/nrmicro1748CrossrefPubMedGoogle Scholar

  • [6] Coustou V., Bisteiro S., Brian M., Diolez P., Bouchaud V., Voisin P., Michels P.A.M., Canioni P., Beltz T., Bringaud F. 2003. ATP generation in the Trypanosoma brucei procyclic form: Cytosolic substrate level phosphorylation is essential, but not oxidative phosphorylation. Journal of Biological Chemistry, 278, 49625–49635. DOI 10.1074/jbc.M307872200. http://dx.doi.org/10.1074/jbc.M307872200CrossrefGoogle Scholar

  • [7] Coombs G.H., Croft J.A., Hart D.T. 1982. A comparative study of Leishmania mexicana amastigotes and promastigotes: enzyme activities and subcellular locations. Molecular and Biochemical Parasitology, 5, 199–211. DOI: 10.1016/0166-6851(82) 90021-4. http://dx.doi.org/10.1016/0166-6851(82)90021-4CrossrefGoogle Scholar

  • [8] Debrabant A., Joshi M.B., Pimenta P.F., Dwyer D. 2004. Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. International Journal of Parasitology, 34, 205–217. DOI: 10.1016/j.ijpara.2003.10.011. http://dx.doi.org/10.1016/j.ijpara.2003.10.011CrossrefGoogle Scholar

  • [9] Ephros M., Bitnun A., Shaked P., Waldman E., Zinberstein D. 1999. Stage-specific activity of pentavalent antimony against Leishmania donovani axenic amastigotes. Antimicrobial Agents and Chemotherapy, 43, 278–282. DOI: 0066-4804/99. Google Scholar

  • [10] Gornall A.G., Bardawill C.J., David M.M. 1949. Determination of serum proteins by means of the biuret reaction. Journal of Biological Chemistry, 177, 751–766. Google Scholar

  • [11] Gupta N., Goyal N., Singha U.K., Bhakuni V., Roy R., Rastogi A.K. 1999. Characterization of intracellular metabolites of axenic amastigotes of Leishmania donovani by 1H NMR spectroscopy. Acta Tropica, 73, 121–133. DOI: 10.1016/S0001-706X(99)00020-0. http://dx.doi.org/10.1016/S0001-706X(99)00020-0CrossrefGoogle Scholar

  • [12] Hassan H.F., Coombs G.H. 1985. Leishmania mexicana, purine metabolizing enzymes of amastigotes and promastigotes. Experimental Parasitology, 59, 139–150. DOI: 10.1016/0014-4894 (85)90066-9. http://dx.doi.org/10.1016/0014-4894(85)90066-9CrossrefGoogle Scholar

  • [13] Huber W., Koella J.C. 1993. A comparision of the methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Tropica, 55, 257–261. DOI: 10.1016/0001-706X(93) 90083-N. http://dx.doi.org/10.1016/0001-706X(93)90083-NCrossrefGoogle Scholar

  • [14] James P.E., Grinberg O.Y., Swartz H.M. 1998. Superoxide production by phagocytosing macrophages in relation to the intracellular distribution of oxygen. Journal of Leukocyte Biology, 64, 78–84. Google Scholar

  • [15] Katwa S.D., Katyare S.S. 2003. A simplified method for inorganic phosphate determination and its application for phosphate analysis in enzyme assays. Analytical Biochemistry, 323, 180–187. DOI: 10.1016/j.ab.2003.08.024. http://dx.doi.org/10.1016/j.ab.2003.08.024CrossrefGoogle Scholar

  • [16] Lemorse S.L., Sereno D., Danlouede S., Veyret B., Brajon N., Vincendeau P. 1997. Leishmania spp.: nitric oxide-mediated metabolic inhibition of promastigotes and axenically grown amastigote forms. Experimental Parasitology, 86, 58–68. DOI: 10.1006/expr.1997.4151. http://dx.doi.org/10.1006/expr.1997.4151CrossrefGoogle Scholar

  • [17] Martin E., Simon M.W., Schaefer F.W., Mukkada A.J. 1976. Enzymes of carbohydrate metabolism in four human species of Leishmania: a comparative survey. Journal of Protozoology, 23, 600–607. DOI: 10.1111/j.1550-7408.1976.tb03850. http://dx.doi.org/10.1111/j.1550-7408.1976.tb03850.xCrossrefGoogle Scholar

  • [18] Mattock N.M., Peters W. 1975. The experimental chemotherapy of leishmaniasis. II. The activity in tissue culture of some antiparasitic and antimicrobial compounds in clinical use. Annals of Tropical Medicine and Parasitology, 69, 359–371. Google Scholar

  • [19] Mc Conville M.J., de Souza D., Saunders E., Likic V.A. Naderer T. 2007. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends in Parasitology, 23, 368–375. DOI: 10.1016/j.pt.2007.06.009. http://dx.doi.org/10.1016/j.pt.2007.06.009CrossrefWeb of ScienceGoogle Scholar

  • [20] Michels P.A.M., Michels J.P.J., Boonstra J., Konings W.N. 1979. Generation of an electropotential proton gradient in bacteria by the excretion of metabolic end products. FEMS Microbiology Letters, 5, 357–364. DOI: 10.1111/j.1574-6968.1979.tb03339. http://dx.doi.org/10.1111/j.1574-6968.1979.tb03339.xCrossrefGoogle Scholar

  • [21] Naderer T., Mc Conville M.J. 2008. The Leishmania macrophage interaction: a metabolic perspective. Cellular Microbiology, 10, 301–308. DOI: 10.1111/j.1462-5822.2007.01096. http://dx.doi.org/10.1111/j.1462-5822.2007.01096.xWeb of ScienceCrossrefGoogle Scholar

  • [22] Peters W., Trotter E.R., Robinson B.L. 1980. The experimental chemotherapy of leishmaniasis, VII. Drug responses of L. major and L. mexicana amazonensis, with an analysis of promising chemical leads to new antileishmanial agents. Annals of Tropical Medicine and Parasitology, 74, 321–335. Google Scholar

  • [23] Rainey P.M., Spithill T.W., Mc Mahon-Pratt D., Pan A.A. 1991. Biochemical molecular characterization of Leishmania pefanoi amastigotes in continuos culture. Molecular and Biochemical Parasitology, 49, 111–118. DOI: 10.1016/0166-6851(91)90134-R. http://dx.doi.org/10.1016/0166-6851(91)90134-RCrossrefGoogle Scholar

  • [24] Rainey P.M., MacKenzie N.E. 1991. A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifanoi amastigotes and promastigotes. Molecular and Biochemical Parasitology, 45, 307–315. DOI: 10.1016/0166-6851(91)90099-R. http://dx.doi.org/10.1016/0166-6851(91)90099-RCrossrefGoogle Scholar

  • [25] Rivas L., Chang L.P. 1983. Intraparasitophorous vacuolar pH of Leishmania mexicana infected macrophages. Biological Bulletin, 165, 536–537. Google Scholar

  • [26] Rudzinska M.A., Alesandro P.A.D., Trager W. 1964. The fine structure of Leishmania donovani and the role of the kinetoplast in the leishmani-leptomonad transformation. Journal of Protozoology, 11, 166–191. DOI: 10.1111/j.1550-7408.1964.tb01739. http://dx.doi.org/10.1111/j.1550-7408.1964.tb01739.xCrossrefGoogle Scholar

  • [27] Saar Y., Ransfold A., Waldman E., Mazareb S., Amin-Spector S., Plumblee J., Turco S.J., Zilberstein D. 1998. Characterization of developmentally regulated activities in axenic amastigotes of Leishmania donovani. Molecular and Biochemical Parasitology, 95, 9–20. DOI: 10.1016/S0166-6851(98)00062-0. http://dx.doi.org/10.1016/S0166-6851(98)00062-0CrossrefGoogle Scholar

  • [28] Sereno D., Lemesre J.L. 1997. Axenically cultured amastigote forms as an in vitro model for investigation of antileishmanial agents. Antimicrobial Agents and Chemotherapy, 41, 972–976. DOI: 0066-4804/97. Google Scholar

  • [29] Singh A.K., Mukhopadhyay C., Biswas S., Singh V.K., Mukhopadhyay C.K. 2012. Intracellular pathogen Leishmania donovani activates hypoxia inducible factor-1 by dual mechanism for survival advantage within macrophage. Plos One, 7, e38489. DOI: 10.1371/journal.pone.0038489. http://dx.doi.org/10.1371/journal.pone.0038489Web of ScienceGoogle Scholar

  • [30] Tielens A.G., Van Hellemond J.J. 1998. The electron transport chain in anaerobically functioning eukaryotes. Biochimica et Biophysica Acta (Bioenergetics), 1365, 71–78. DOI: 10.1016/S0005-2728(98)00045-0. http://dx.doi.org/10.1016/S0005-2728(98)00045-0CrossrefGoogle Scholar

  • [31] Van Hellemond J.J., Van der Klei A., van Weelden S.W., Tielens A.G. 2003. Biochemical and evolutionary aspects of anaerobically functioning mitochondria. Philosophical Transactions of the Royal Society B: Biological Science, 358, 205–213. DOI: 10.1098/rstb.2002.1182. http://dx.doi.org/10.1098/rstb.2002.1182CrossrefGoogle Scholar

  • [32] Wennberg E., Weiss L. 1969. The structure of the spleen and hemolysis. Annual Review of Medicine, 20, 29–40. DOI: 10.1146/annurev.me.20.020169.000333. http://dx.doi.org/10.1146/annurev.me.20.020169.000333CrossrefGoogle Scholar

  • [33] Zilberstein D., Shapira M. 1994. The role of pH and temperature in the development of Leishmania parasites. Annual Review of Microbiology, 48, 449–470. DOI: 10.1146/annurev.mi.48.100194.002313. http://dx.doi.org/10.1146/annurev.mi.48.100194.002313CrossrefGoogle Scholar

About the article

Published Online: 2014-02-26

Published in Print: 2014-03-01

Citation Information: Acta Parasitologica, Volume 59, Issue 1, Pages 11–16, ISSN (Online) 1896-1851, DOI: https://doi.org/10.2478/s11686-014-0203-9.

Export Citation

© 2014 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Pragya Chandrakar, Naresh Gunaganti, Naveen Parmar, Ashok Kumar, Sandeep Kumar Singh, Mamunur Rashid, M. Wahajuddin, Tadigopulla Narender, and Susanta Kar
European Journal of Medicinal Chemistry, 2019, Page 111632
Alena Zíková, Vladimír Hampl, Zdeněk Paris, Jiří Týč, and Julius Lukeš
Molecular and Biochemical Parasitology, 2016, Volume 209, Number 1-2, Page 46
Plaban Bhattacharya, Subhasish Mondal, Souvik Basak, Pradeep Das, Achintya Saha, and Tanmoy Bera
Acta Tropica, 2016, Volume 158, Page 97
Ruby Singh, Bidyut Purkait, Kumar Abhishek, Savita Saini, Sushmita Das, Sudha Verma, Abhishek Mandal, Ayan Kr. Ghosh, Yousuf Ansari, Ashish Kumar, Abul H. Sardar, Ajay Kumar, Pradeep Parrack, and Pradeep Das
Cell & Bioscience, 2016, Volume 6, Number 1
Subhasish Mondal, Jay Jyoti Roy, and Tanmoy Bera
Journal of Bioenergetics and Biomembranes, 2014, Volume 46, Number 5, Page 395

Comments (0)

Please log in or register to comment.
Log in