Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2018: 1.00

SCImago Journal Rank (SJR) 2018: 0.500
Source Normalized Impact per Paper (SNIP) 2018: 0.664

More options …
Volume 59, Issue 1


Toxocariasis and lung function: Relevance of a neglected infection in an urban landscape

Michael Walsh
  • Department of Epidemiology and Biostatistics, School of Public Health, State University of New York, Downstate, Brooklyn, NY, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Haseeb
  • Departments of Cell Biology, Pathology and Medicine, College of Medicine, State University of New York, Downstate, Brooklyn, NY, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-02-26 | DOI: https://doi.org/10.2478/s11686-014-0221-7


Toxocariasis has been highlighted as a potentially important neglected infection of poverty in developed countries that experience substantive health disparities such as the United States. An association between Toxocara infection and lung function, in concert with a relatively high prevalence of infection, may mark an important mechanism by which this infection could contribute significantly to the differential morbidity across different socioeconomic groups and landscapes. To assess the potential relevance of this infection in a dense urban environment, we measured the association between forced expiratory volume in 1 second (FEV1) and serology diagnosed Toxocara infection in a sample of US-born New York City residents. We identified a significant independent association between Toxocara infection and lung function, wherein those with previous Toxocara infection had a 236.9 mL reduced FEV1 compared to those without Toxocara infection even after adjusting for age, sex, ethnicity, level of education, smoking status, body mass index, and pet ownership. These findings from New York City corroborate similar findings in a national sample and, while the cross-sectional data preclude a direct causal relationship, this study identifies a potentially important neglected infection in a dense urban landscape.

Keywords: Toxocariasis; lung function; urban landscape

  • [1] Adler N.E. and Rehkopf D.H. 2008. U.S. disparities in health: descriptions, causes, and mechanisms. Annual Review of Public Health, 29, 235–252. http://dx.doi.org/10.1146/annurev.publhealth.29.020907.090852Web of ScienceCrossrefGoogle Scholar

  • [2] Buijs J., Borsboom G., van Gemund J.J., Hazebroek A., van Dongen P.A., van Knapen F., Neijens H.J. 1994. Toxocara seroprevalence in 5-year-old elementary schoolchildren: relation with allergic asthma. American Journal Epidemiology, 140, 839–847. Google Scholar

  • [3] Buijs J., Egbers M.W., Lokhorst W.H., Savelkoul H.F., Nijkamp F.P. 1995. Toxocara-induced eosinophilic inflammation. Airway function and effect of anti-IL-5. American Journal of Respiratory and Critical Care Medicine, 151(3 Pt 1), 873–878. http://dx.doi.org/10.1164/ajrccm/151.3_Pt_1.873Google Scholar

  • [4] Buijs J., Borsboom G., Renting M., Hilgersom W.J., van Wieringen J.C., Jansen G., Neijens J. 1997. Relationship between allergic manifestations and Toxocara seropositivity: a cross-sectional study among elementary school children. European Respiratory Journal, 10, 1467–1475. http://dx.doi.org/10.1183/09031936.97.10071467CrossrefGoogle Scholar

  • [5] Centers for Disease Control and Prevention. (2007). Documentation, codebook and frequencies; surplus sera laboratory component: antibody to Toxocara larva migrans. NHANES III, series 11 Data Files 26A. Available via http://www.cdc.gov/nchs/about/major/nhanes/archive_whatsnew.htm. Google Scholar

  • [6] Chan P.W., Anuar A.K., Fong M.Y., Debruyne J.A., Ibrahim J. 2001. Toxocara seroprevalence and childhood asthma among malaysian children. Pediatrics International, 43, 350–353. http://dx.doi.org/10.1046/j.1442-200X.2001.01421.xCrossrefGoogle Scholar

  • [7] Congdon P. and Lloyd P. 2011. Toxocara infection in the United States: the relevance of poverty, geography and demography as risk factors, and implications for estimating county prevalence. International Journal of Public Health, 56, 15–24. http://dx.doi.org/10.1007/s00038-010-0143-6CrossrefWeb of ScienceGoogle Scholar

  • [8] Feldman G.J. and Parker H.W. 1992. Visceral larva migrans associated with the hypereosinophilic syndrome and the onset of severe asthma. Annals of Internal Medicine, 116, 838–840. http://dx.doi.org/10.7326/0003-4819-116-10-838CrossrefGoogle Scholar

  • [9] Hankinson J.L. and Bang K.M. 1991. Acceptability and reproducibility criteria of the American Thoracic Society as observed in a sample of the general population. American Review of Respiratory Disease, 143, 516–521. http://dx.doi.org/10.1164/ajrccm/143.3.516CrossrefGoogle Scholar

  • [10] Hotez P.J. 2008. Neglected infections of poverty in the United States of America. PloS Neglected Tropical Diseases, 2, e256. http://dx.doi.org/10.1371/journal.pntd.0000256CrossrefWeb of ScienceGoogle Scholar

  • [11] Hotez P.J. and Wilkins P.P. 2009. Toxocariasis: America’s most common neglected infection of poverty and a helminthiasis of global importance? PLoS Neglected Tropical Diseases, 3, e400. http://dx.doi.org/10.1371/journal.pntd.0000400CrossrefWeb of ScienceGoogle Scholar

  • [12] Kuk S., Ozel E., Oğuztürk H., Kirkil G., Kaplan M. 2006. Seroprevalence of Toxocara antibodies in patients with adult asthma. Southern Medical Journal, 99, 719–722. http://dx.doi.org/10.1097/01.smj.0000223949.11527.48CrossrefGoogle Scholar

  • [13] National Center for Health Statistics, U.S. Department of Health and Human Services (DHHS). Third National Health and Nutrition Examination Survey, 1988–1994, NHANES III Examination Data File (CD-ROM). Public Use Data File Documentation Number 76200. Hyattsville, MD.: Centers for Disease Control and Prevention, 1996. Available from National Technical Information Service (NTIS), Springfield, VA. Acrobat.PDF format; includes access software: Adobe Systems, Inc. Acrobat Reader 2.1. Google Scholar

  • [14] Oteifa N.M., Moustafa M.A. and Elgozamy B.M. 1998. Toxocariasis as a possible cause of allergic diseases in children. Journal of the Egyptian Society of Parasitology, 28, 365–372. Google Scholar

  • [15] Pinelli E., Withagen C., Fonville M., Verlaan A., Dormans J., van Loveren H., Nicoll G., Maizels R.M., van der Giessen J. 2005. Persistent airway hyper-responsiveness and inflammation in Toxocara canis-infected BALB/c mice. Clinical and Experimental Allergy, 35, 826–32. http://dx.doi.org/10.1111/j.1365-2222.2005.02250.xCrossrefGoogle Scholar

  • [16] Pritchard D.I., Eady R.P., Harper S.T., Jackson D.M., Orr T.S.C., Richards I.M., Trigg S., Wells E. 1983. Laboratory infection of primates with Ascaris suum to provide a model of allergic bronchoconstriction. Clinical and Experimental Immunology, 54, 469–476. Google Scholar

  • [17] Sharghi N., Schantz P.M., Caramico L., Ballas K., Teague B.A., Hotez P.J. 2001. Environmental exposure to Toxocara as a possible risk factor for asthma: a clinic-based case-control study. Clinical Infectious Diseases, 32, E111–116. http://dx.doi.org/10.1086/319593CrossrefGoogle Scholar

  • [18] Walsh M.G. 2011. Toxocara infection and diminished lung function in a nationally representative sample from the United States population. International Journal for Parasitology, 41, 243–247. http://dx.doi.org/10.1016/j.ijpara.2010.09.006CrossrefWeb of ScienceGoogle Scholar

  • [19] Weiss S.T. 2000. Parasites and asthma/allergy: What is the relationship? Journal of Allergy and Clinical Immunology, 105(2 Pt 1), 205–10. http://dx.doi.org/10.1016/S0091-6749(00)90067-8CrossrefGoogle Scholar

  • [20] Won K.Y., Kruszon-Moran D., Schantz P.M., Jones J.L. 2008. National seroprevalence and Risk Factors for Zoonotic Toxocara spp. Infection. American Journal of Tropical Medicine and Hygiene, 79, 552–557. Google Scholar

About the article

Published Online: 2014-02-26

Published in Print: 2014-03-01

Citation Information: Acta Parasitologica, Volume 59, Issue 1, Pages 126–131, ISSN (Online) 1896-1851, DOI: https://doi.org/10.2478/s11686-014-0221-7.

Export Citation

© 2014 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Ali Rostami, Guangxu Ma, Tao Wang, Anson V. Koehler, Andreas Hofmann, Bill C.H. Chang, Calum N. Macpherson, and Robin B. Gasser
Infection, Genetics and Evolution, 2019, Volume 74, Page 104002
Quintana de Moura Micaele, Raquel Pegoraro de Macedo Marcia, Wesley Douglas da Silva Terto, Luciana Farias da Costa Avila, Pereira Leivas Leite Fabio, Jaime Scaini Carlos, Berne Pinto Natália, de Almeida Capella Gabriela, Leites Strothmann Adriane, Marreiro Villela Marcos, and Elisabeth Aires Berne Maria
Acta Tropica, 2018
Guangxu Ma, Celia V Holland, Tao Wang, Andreas Hofmann, Chia-Kwung Fan, Rick M Maizels, Peter J Hotez, and Robin B Gasser
The Lancet Infectious Diseases, 2017
Aaron Farmer, Thomas Beltran, Young Sammy Choi, and Alessandra Morassutti
PLOS Neglected Tropical Diseases, 2017, Volume 11, Number 7, Page e0005818
Bin Zhan, Ravi Ajmera, Stefan Michael Geiger, Marco Túlio Porto Gonçalves, Zhuyun Liu, Junfei Wei, Patricia P. Wilkins, Ricardo Fujiwara, Pedro Henrique Gazzinelli-Guimaraes, Maria Elena Bottazzi, and Peter Hotez
Tropical Medicine & International Health, 2015, Volume 20, Number 12, Page 1787
Lingling Li, Wei Gao, Xiao Yang, Dandan Wu, Hui Bi, Sini Zhang, Mao Huang, and Xin Yao
Annals of Allergy, Asthma & Immunology, 2014, Volume 113, Number 2, Page 187

Comments (0)

Please log in or register to comment.
Log in