Jump to ContentJump to Main Navigation
Show Summary Details

Acta Parasitologica


IMPACT FACTOR increased in 2015: 1.293

SCImago Journal Rank (SJR) 2015: 0.581
Source Normalized Impact per Paper (SNIP) 2015: 0.780
Impact per Publication (IPP) 2015: 1.132

99,00 € / $149.00 / £75.00*

Online
ISSN
1896-1851
See all formats and pricing



Select Volume and Issue

Issues

Thermophilic potentially pathogenic amoebae isolated from natural water bodies in Poland and their molecular characterization

1Department of Genetics, Szczecin University, Felczaka 3c, 71-412, Szczecin, Poland

2Chair and Department of Biology and Medical Parasitology, Pomeranian Medical University, Szczecin, Poland

© 2014 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)

Citation Information: Acta Parasitologica. Volume 59, Issue 3, Pages 433–441, ISSN (Online) 1896-1851, DOI: 10.2478/s11686-014-0266-7, August 2014

Publication History

Published Online:
2014-08-15

Abstract

The free-living amoebae (FLA) may live in the environment and also within other organisms as parasites and then they are called amphizoic. They are potentially pathogenic for humans and animals and are found in water that is a source of infection. The aim of this study was molecular detection and identification of these FLA in natural water bodies in North-Western Poland to evaluate the risk of the pathogenic amoebae infections. We examined surface water samples collected from 50 sites and first, the tolerance thermic test was performed in order to select thermophilic, potentially pathogenic strains. For molecular identification of FLA, regions of 18S rDNA, 16S rDNA and intergenic spacers were amplified. Acanthamoeba T4 and T16 genotypes of 18S rDNA gene and 18S rDNA of H. vermiformis were detected. We identified two variants of Acanthamoeba T4 genotype, two variants of Acanthamoeba T16 genotype and one variant of H. vermiformis. Identification of the T16 genotype and H. vermiformis in water was for the first time in Poland. Additionally, we made attempts to adapt the RLB method for detection and differentiation of FLA species and strains. PCR seems to be more sensitive than RLB hybridization, though.

Keywords: Acanthamoeba T4 and T16 genotypes; free-living amoebae; genotyping; Hartmannella vermiformis; natural water bodies

  • [1] Alsam S., Kim K.S., Stins M., Rivas A.O., Sissons J., Khan N.A. 2003. Acanthamoeba interactions with human brain microvascular endothelial cells. Microbial Pathogenesis, 35, 235–241. DOI:10.1016/j.micpath.2003.07.001. http://dx.doi.org/10.1016/j.micpath.2003.07.001 [CrossRef]

  • [2] Booton G.C., Kelly D.J., Chu Y.W., Seal D.V., Houang E., Lam D.S., Byers T.J., Fuerst P.A. 2002. 18S ribosomal DNA typing and tracking of Acanthamoeba species isolates from corneal scrape specimens, contact lenses, lens cases, and home water supplies of Acanthamoeba keratitis patients in Hong Kong. Journal of Clinical Microbiology, 40, 1621–1625. DOI:10.1128/JCM.40.5.1621-1625.2002. http://dx.doi.org/10.1128/JCM.40.5.1621-1625.2002 [CrossRef]

  • [3] Booton G.C., Visvesvara G.S., Byers T.J., Kelly D.J., Fuerst P.A. 2005. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. Journal of Clinical Microbiology, 43, 1689–1693. DOI: 10.1128/JCM43.4.1689-1693.2005. http://dx.doi.org/10.1128/JCM.43.4.1689-1693.2005 [CrossRef]

  • [4] Brown M.W., Spiegel F.W., Silberman J.D. 2007. Amoeba at attention: phylogenetic affinity of Sappinia pedata. Journal of Eukaryotic Microbiology, 54, 511–519. DOI: 10.1111/j.1550-7408.2007.00292.x. [Web of Science] [CrossRef]

  • [5] Corsaro D., Venditti D. 2010. Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitology Research, 107, 233–238. DOI: 10.1007/s00436-010-1870-6. http://dx.doi.org/10.1007/s00436-010-1870-6 [CrossRef] [Web of Science]

  • [6] Corsaro D., Venditti D. 2011. More Acanthamoeba genotypes: limits to the use of rDNA fragments to describe new genotypes. Acta Protozoologica, 50, 49–54.

  • [7] Da Rocha-Azevedo B., Tanowitz H.B., Marciano-Cabral F. 2009. Diagnosis of infections caused by pathogenic free-living amoebae. Interdisciplinary Perspectives on Infectious Diseases, 2009,1–14. DOI:10.1155/2009/251406. http://dx.doi.org/10.1155/2009/251406 [CrossRef]

  • [8] De Jonckheere J.F. 1980. Growth characteristics, cytopathic effect in cell culture, and virulence in mice of 36 type strains belonging to 19 different Acanthamoeba spp. Applied and Environmental Microbiology, 39, 681–685.

  • [9] Derda M., Hadaś E., Wojtkowiak-Giera A., Wojt W.J., Cholewinski M., Skrzypczak L. 2013. The occurrence of free-living amoebae in fountains. Probl. Hig. Epidemiol., 94, 147–150.

  • [10] Dyková I., Kostka M., Wortberg F., Nardy E., Pecková H. 2010. New data on etiology of nodular gill disease in rainbow trout, Oncorhynchus mykiss. Folia Parasitologica (Praha), 57, 157–163. http://dx.doi.org/10.14411/fp.2010.021

  • [11] Dyková I., Pindová Z., Fiala I., Dvoráková H., Machácková B. 2005. Fish-isolated strains of Hartmannella vermiformis page, 1967: morphology, phylogeny and molecular diagnosis of the species in tissue lesions. Folia Parasitologica (Praha), 52, 295–303. http://dx.doi.org/10.14411/fp.2005.040

  • [12] Gast R.J. 2001. Development of an Acanthamoeba — specific reverse dot — blot and the discovery of a new ribotype. Journal of Eukaryotic Microbiology, 48, 609–615. http://dx.doi.org/10.1111/j.1550-7408.2001.tb00199.x

  • [13] Gast R.J., Ledee D.R., Fuerst P.A., Byers T.J. 1996. Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. Journal of Eukaryotic Microbiology, 43, 498–504. http://dx.doi.org/10.1111/j.1550-7408.1996.tb04510.x

  • [14] Gianinazzi C., Schild M., Zumkehr B., Wüthrich F., Nüesch I., Ryter R., Schürch N., Gottstein B., Müller N. 2010. Screening of Swiss hot spring resorts for potentially pathogenic free-living amoebae. Experimental Parasitology, 126, 45–53. DOI:10.1016/j.exppara.2009.12.008. http://dx.doi.org/10.1016/j.exppara.2009.12.008 [CrossRef] [Web of Science]

  • [15] Górnik K., Kuźna-Grygiel W. 2004. Presence of virulent strains of amphizoic amoebae in swimming pools of the city of Szczecin. Annals of Agricultural and Environmental Medicine, 11, 233–236.

  • [16] Gubbels J.M., de Vos A.P., van der Weide M., Viseras J., Schouls L.M., de Vries E., Jongejan F. 1999. Simultaneus detection of bovine Theileria and Babesia species by reverse line blot hybridization. Journal of Clinical Microbiology, 37, 1782–1789.

  • [17] Hewett M.K., Robinson B.S., Monis P.T., Saint C.P. 2003. Identification of a new Acanthamoeba 18S rRNA gene sequence type, corresponding to the species Acanthamoeba jacobsi Sawyer, Nerad and Visvesvara, 1992 (Lobosea: Acanthamoebidae). Acta Protozoologica, 42, 325–329.

  • [18] Horn M., Fritsche T.R., Gautom R.K., Schleifer K.H., Wagner M. 1999. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environmental Microbiology, 1, 357–367. DOI: 10.1046/j.1462-2920.1999.00045.x. http://dx.doi.org/10.1046/j.1462-2920.1999.00045.x [CrossRef]

  • [19] Hsu B.M., Lin C.L., Shih F.C. 2009. Survey of pathogenic free-living amoebae and Legionella spp. in mud spring recreation area. Water Research, 43, 2817–2828. DOI: 10.1016/j.watres.2009.04.002. http://dx.doi.org/10.1016/j.watres.2009.04.002 [CrossRef] [Web of Science]

  • [20] Khan N.A. 2006. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiology Reviews, 30, 564–595. DOI: 10.1111/j.1574-6976.2006.00023.x. http://dx.doi.org/10.1111/j.1574-6976.2006.00023.x [CrossRef]

  • [21] Khan N.A., Jarroll E.L., Paget T.A. 2002. Molecular and physiological differentiation between pathogenic and nonpathogenic Acanthamoeba. Current Microbiology, 45, 197–202. DOI: 10.1007/s00284-001-0108-3. http://dx.doi.org/10.1007/s00284-001-0108-3 [CrossRef]

  • [22] Krometis L.A.H., Characklis G.W., Sobsey M.D. 2009. Identification of particle size classes inhibiting protozoan recovery from surface water samples via U.S. Environmental Protection Agency Method 1623. Applied and Environmental Microbiology, 75, 6619–6621. DOI: 10.1128/AEM.01136-09. http://dx.doi.org/10.1128/AEM.01136-09 [Web of Science] [CrossRef]

  • [23] Kuiper M.W., Valster R.M., Wullings B.A., Boonstra H., Smidt H., van der Kooij D. 2006. Quantitative detection of the free-living amoeba Hartmannella vermiformis in surface water by using real-time PCR. Applied and Environmental Microbiology, 72, 5750–5756. DOI: 10.1128/AEM.00085-06. http://dx.doi.org/10.1128/AEM.00085-06 [CrossRef]

  • [24] Landell M.F., Salton J., Caumo K., Broetto L., Rott M.B. 2013. Isolation and genotyping of free-living environmental isolates of Acanthamoeba spp. from bromeliads in Soutern Brazil. Experimental Parasitology 134: 290–294. DOI: 10.1016/j.exppara.2013.03.028. http://dx.doi.org/10.1016/j.exppara.2013.03.028 [Web of Science] [CrossRef]

  • [25] Lares-Villa F., Hernández-Peña C. 2010. Concentration of Naegleria fowleri in natural waters used for recreational purposes in Sonora, Mexico (November 2007–October 2008). Experimental Parasitology, 126, 33–36. DOI: 10.1016/j.exppara.2010.04.011. http://dx.doi.org/10.1016/j.exppara.2010.04.011 [Web of Science] [CrossRef]

  • [26] Lorenzo-Morales J., Monteverde-Miranda C.A., Jiménez C., Tejedor M.L., Valladares B., Ortega-Rivas A. 2005. Evaluation of Acanthamoeba isolates from environmental sources in Tenerife, Canary Islands, Spain. Annals of Agricultural and Environmental Medicine, 12, 233–236.

  • [27] Lanocha N., Kosik-Bogacka D., Maciejewska A., Sawczuk M., Wilk A., Kuzna-Grygiel W. 2009. The occurrence Acanthamoeba (free living amoeba) in environmental and respiratory samples in Poland. Acta Protozoologica, 48, 271–279.

  • [28] Nagyová V., Nagy A., Janeček Š., Timko J. 2010. Morphological, physiological, molecular and phylogenetic characterization of new environmental isolates of Acanthamoeba spp. from the region of Bratislava, Slovakia. Biologia, 65, 81–91. DOI: 10.2478/s11756-009-0217-1. http://dx.doi.org/10.2478/s11756-009-0217-1 [CrossRef] [Web of Science]

  • [29] Nuprasert W., Putaporntip C., Pariyakanok L., Jongwutiwes S. 2010. Identification of a novel T17 genotype of Acanthamoeba from environmental isolates and T10 genotype causing keratitis in Thailand. Journal of Clinical Microbiology, 48, 4636–4640. DOI: 10.1128/JCM.01090-10. http://dx.doi.org/10.1128/JCM.01090-10 [CrossRef] [Web of Science]

  • [30] Qvarnstrom Y., da Silva A.J., Schuster F.L., Gelman B.B., Visvesvara G.S. 2009. Molecular confirmation of Sappinia pedata as a causative agent of amoebic encephalitis. Journal of Infectious Diseases, 199, 1139–1142. DOI: 10.1086/597473. http://dx.doi.org/10.1086/597473 [Web of Science] [CrossRef]

  • [31] Qvarnstrom Y., Nerad T.A., Visvesvara G.S. 2013. Characterisation of a new pathogenic Acanthamoeba species, A. byersi n. sp., isolated from a human with fatal amoebic encephalitis. Journal of Eucaryotic Microbiology, 60, 626–633. DOI:10.1111/jeu12069. http://dx.doi.org/10.1111/jeu.12069 [CrossRef]

  • [32] Schroeder J.M., Booton G.C., Hay J., Niszl I.A., Seal D.V., Markus M.B., Fuerst P.A., Byers T.J. 2001. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. Journal of Clinical Microbiology, 39(5), 1903–1911. DOI:10.1128/JCM.39.5.1903-1911.2001. http://dx.doi.org/10.1128/JCM.39.5.1903-1911.2001 [CrossRef]

  • [33] Schuster F.L., Visvesvara G.S. 2004. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. International Journal of Parasitology, 34, 1001–1027. DOI:10.1016/j.ijpara.2004.06.004 http://dx.doi.org/10.1016/j.ijpara.2004.06.004 [CrossRef]

  • [34] Siddiqui R., Khan N.A. 2012. Biology and pathogenesis of Acanthamoeba. Parasites and Vectors, 5, 6. DOI: 10.1186/1756-3305-5-6. http://dx.doi.org/10.1186/1756-3305-5-6 [Web of Science] [CrossRef]

  • [35] Skotarczak B. 2009. Methods for parasitic protozoa detection in the environmental samples. Parasite, 16, 183–190. http://dx.doi.org/10.1051/parasite/2009163183 [Web of Science]

  • [36] Stothard D.R., Schroeder-Diedrich J.M., Awwad M.H., Gast R.J., Ledee D.R., Rodriguez-Zaragosa S., Dean C.L., Fuerst P.A., Byers T.J. 1998. The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. Journal of Eukaryotic Microbiology, 45, 45–54. http://dx.doi.org/10.1111/j.1550-7408.1998.tb05068.x

  • [37] Stratford M.P., Griffiths A.J. 1978. Variations in the properties and morphology of cysts of Acanthamoeba castellanii. Journal of General Microbiology, 108, 33. DOI: 10.1099/00221287-108-1-33. http://dx.doi.org/10.1099/00221287-108-1-33 [CrossRef]

  • [38] Tanveer T., Hameed A., Muazzam A.G., Jung S.J., Gul A., Matin A. 2013. Isolation and molecular characterization of potentially pathogenic Acanthamoeba genotypes from diverse water resources including household drinking water from Khyber Pakhtunkhwa, Pakistan. Parasitology Research, 112, 2925–2932. http://dx.doi.org/10.1007/s00436-013-3465-5 [Web of Science]

  • [39] Thomas V., Herrera-Rimann K., Blanc D.S., Greub G. 2006. Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Applied and Environmental Microbiology, 72(4), 2428–2438. DOI:10.1128/AEM.72.4.2428-2438.2006. http://dx.doi.org/10.1128/AEM.72.4.2428-2438.2006 [CrossRef] [Web of Science]

  • [40] Tsvetkova N., Schild M., Panaiotov S., Kurdova-Mintcheva R., Gottstein B., Walochnik J., Aspöck H., Lucas M.S., Müller N. 2004. The identification of free-living environmental isolates of amoebae from Bulgaria. Parasitology Research, 92, 405–413. DOI: 10.1007/s00436-003-1052-x. http://dx.doi.org/10.1007/s00436-003-1052-x [CrossRef]

  • [41] Visvesvara G.S., Moura H., Schuster F.L. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea. FEMS Immunology and Medical Microbiology, 50, 1–26. DOI: 10.1111/j.1574-695X.2007.00232.x. http://dx.doi.org/10.1111/j.1574-695X.2007.00232.x [Web of Science] [CrossRef]

  • [42] Yagi S., Schuster F.L., Visvesvara G.S. 2008. Demonstration of Balamuthia and Acanthamoeba mitochondrial DNA in sectioned archival brain and other tissues by the polymerase chain reaction. Parasitology Research, 102, 491–497. DOI: 10.1007/s00436-007-0789-z. http://dx.doi.org/10.1007/s00436-007-0789-z [CrossRef]

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Lidia Chomicz, David Bruce Conn, Marcin Padzik, Jacek P. Szaflik, Julia Walochnik, Paweł J. Zawadzki, Witold Pawłowski, and Monika Dybicz
BioMed Research International, 2015, Volume 2015, Page 1
[2]
Daniele Corsaro, Julia Walochnik, Martina Köhsler, and Marilise B. Rott
Parasitology Research, 2015, Volume 114, Number 7, Page 2481

Comments (0)

Please log in or register to comment.