Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 59, Issue 4


Topography and ultrastructure of the tegument of Aphallus tubarium (Rodolphi, 1819) Poche, 1926 (Digenea: Cryptogonimidae), intestinal parasite of the common Dentex dentex (Linnaeus 1758) from Valinco Gulf

Laetitia Antonelli
  • UMR CNRS 6134 SPE, Laboratoire Parasites et écosystèmes Méditerranéens, Faculté des Sciences et Techniques, Université de Corse, Campus Grimaldi, B.P. 52, 20250, Corte, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yann Quilichini
  • UMR CNRS 6134 SPE, Laboratoire Parasites et écosystèmes Méditerranéens, Faculté des Sciences et Techniques, Université de Corse, Campus Grimaldi, B.P. 52, 20250, Corte, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joséphine Foata
  • UMR CNRS 6134 SPE, Laboratoire Parasites et écosystèmes Méditerranéens, Faculté des Sciences et Techniques, Université de Corse, Campus Grimaldi, B.P. 52, 20250, Corte, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bernard Marchand
  • UMR CNRS 6134 SPE, Laboratoire Parasites et écosystèmes Méditerranéens, Faculté des Sciences et Techniques, Université de Corse, Campus Grimaldi, B.P. 52, 20250, Corte, France
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-20 | DOI: https://doi.org/10.2478/s11686-014-0281-8


The tegument ultrastructure of the intestinal fluke Aphallus tubarium was studied for the first time with the use of scanning and transmission electron microscopy. New details on morphology were recorded. The ultrastructural study revealed that the tegument of A. tubarium had a syncytial organization with a distal cytoplasm lying over a basal matrix and cytons. The surface of the tegument is covered with pectinate spines arranged quincuncially. As anterior-posterior differences were observed, particular attention was given to spines. Spines decrease in size and density from the anterior part of body to posterior part. Two types of sensory structures were identified, uniciliated and dome-shaped. Type 1 sensory receptors were outgrowths bearing groups of papillae with shorter and rigid apical seta visible on the anterior part of body surface, encircling the worm. Type 2 sensory receptors was dome-shaped papillae devoid of cilia, found mainly around the oral sucker. Diagrams of spines and sensory receptors were made to help in understanding the nature of these structures. Surface morphology may prove to be useful in distinguishing Aphallus spp with other Cryptogonimidae.

Keywords: Aphallus tubarium; tegument; syncytium; spines; sensory structures

  • [1] Abdul-Salam J., Sreelatha B.N.S. 2000. Surface morphology of Probolocoryphe uca (Sarkisian, 1957) (Digenea: Microphallidae) from Kuwait bay. Systematic Parasitology 46, 209–214. DOI: 10.1023/A:1006394104481. http://dx.doi.org/10.1023/A:1006394104481CrossrefGoogle Scholar

  • [2] Antonelli L. 2010. Impact du parasitisme sur la pisciculture en Corse. Suivi des parasitoses et étude des transferts de parasites depuis la faune sauvage vers les poissons élevés en mer ouverte. Thèse, Université de Corse, Pasquale Paoli. Google Scholar

  • [3] Antonelli L., Quilichini Y., Marchand B. 2010. Sparicotyle chrysophrii (Van Beneden and Hesse 1863) (Monogenea: Polyopisthocotylea) parasite of cultured Gilthead sea bream Sparus aurata (Linnaeus 1758) (Pisces: Teleostei) from Corsica: ecological and morphological study. Parasitology Research, 107, 389–398. DOI: 10.1007/s00436-010-1876-0. http://dx.doi.org/10.1007/s00436-010-1876-0Web of ScienceCrossrefGoogle Scholar

  • [4] Bartoli P., Bray A.R. 1987. Redescriptions of two cryptogonimid digeneans from the fish Dentex dentex (L., 1758) (Sparidae) in the Mediterranean Sea. Systematic Parasitology, 10, 117–127. DOI: 10.1007/BF00009617. http://dx.doi.org/10.1007/BF00009617CrossrefGoogle Scholar

  • [5] Bartoli P., Gibson D.I. 2001. Metadena phoceae n. sp. (Digenea: Cryptogonimidae), a rectal parasite of the shore rockling Gaidropsarus mediterraneus (Teleostei: Lotidae) in the western Mediterranean. Systematic Parasitology, 50, 53–62. DOI: 10.1023/A:1011861023138. http://dx.doi.org/10.1023/A:1011861023138CrossrefGoogle Scholar

  • [6] Bennett C.E. 1975. Surface features, sensory structures and movement of the newly excysted juvenile Fasciola hepatica L. Journal of Parasitology, 61, 886–981. DOI: 10.2307/327 9229. http://dx.doi.org/10.2307/3279229CrossrefGoogle Scholar

  • [7] Buchmann, K., Lindenstrøm T. 2002. Interactions between monogenean parasites and their fish hosts. International Journal for Parasitology, 32, 309–319. DOI: 10.1016/S0020-7519(01)00 332-0. http://dx.doi.org/10.1016/S0020-7519(01)00332-0CrossrefGoogle Scholar

  • [8] Bundy D.A.P. 1982. An unified approach to the taxonomic descriptions of digenean spines patterns. Systematic Parasitology, 4, 139–140. DOI: 10.1007/BF00018996. http://dx.doi.org/10.1007/BF00018996CrossrefGoogle Scholar

  • [9] Burton P.R. 1964. The ultrastructure of the integument of the frog lung-fluke, Haematoloechus medioplexus (Trematoda: Plagiorchiidae). Journal of Morphology, 115, 305–317. DOI: 10. 1002/jmor.1051150302. http://dx.doi.org/10.1002/jmor.1051150302CrossrefGoogle Scholar

  • [10] Chai J.Y., Guk S.M., Han E.T., Seo M., Shin E.H., Sohn W.M., Choi S.Y., Lee S.H. 2000. Surface ultrastructure of Metagonimus takahashii metacercariae and adults. Korean Journal of Parasitology, 38, 9–15. DOI: 10.3347/kjp.2000.38.1.9. http://dx.doi.org/10.3347/kjp.2000.38.1.9CrossrefGoogle Scholar

  • [11] Choudhury A., Nelson P.A. 2000. Redescription of Crepidostomum opeongoensis Caira, 1985 (Trematoda: Allocreadiidae) from fish host Hiodon alosoides and Hiodon tergisus (Osteichthyes: Hiodontidae). Journal of Parasitology, 86, 1305–1312. DOI: 10.1645/0022-3395(2000)086. http://dx.doi.org/10.1645/0022-3395(2000)086[1305:ROCOCT]2.0.CO;2CrossrefGoogle Scholar

  • [12] Cohen S.C., Kohn A., Barth O.M. 1995. Scanning electronic study of Prosorhynchoides arcuatus (Linton, 1900) (Bucephalidae: Digenea). Memorias do Instituto de Oswaldo Cruz, 90, 25–32. DOI: 10.1590/S0074-02761995000100007. http://dx.doi.org/10.1590/S0074-02761995000100007CrossrefGoogle Scholar

  • [13] Czubaj A., Niewiadomska K. 1996. Ultrastructure of sensory endings in Diplostomum pseudospathaecum Niewiadomska, 1984 Cercariae (Digenea, Diplostomidae). International Journal for Parasitology, 26, 1217–1225. DOI: 10.1016/S0020-7519(96)00085-9. http://dx.doi.org/10.1016/S0020-7519(96)00085-9CrossrefGoogle Scholar

  • [14] Dalton J.P., Skelly P., Dalton D.W. 2004. Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Canadian Journal of Zoology, 82, 211–232. DOI: 10.1139/z03-213. http://dx.doi.org/10.1139/z03-213CrossrefGoogle Scholar

  • [15] Foata J., Quilichini Y., Greani S., Marchand B. 2011. Sperm ultrastructure of the digenean Aphallus tubarium (Rudolphi, 1819) Poche, 1926 (Platyhelminthes, Cryptogonimidae) intestinal parasite of Dentex dentex. Tissue Cell, 44, 15–21. DOI: 10.1016/j.tice.2011.10.001. http://dx.doi.org/10.1016/j.tice.2011.10.001Web of ScienceCrossrefGoogle Scholar

  • [16] Han E.T., Han K.Y., Chai J.Y. 2003. Tegumental ultrastructure of the juvenile and adult Himasthla alincia (Digenea: Echinostomatidae). Korean Journal of Parasitology, 41, 17–25. DOI: 10.3347/kjp.2003.41.1.17. http://dx.doi.org/10.3347/kjp.2003.41.1.17CrossrefGoogle Scholar

  • [17] Hong S.J. 2009. Surface ultrastructure of Plagiorchis muris growth and developmental stages in rats, the final host. Parasitology Research, 105, 1077–1083. DOI: 10.1007/s00436-009-1522-x. http://dx.doi.org/10.1007/s00436-009-1522-xWeb of ScienceCrossrefGoogle Scholar

  • [18] João Santos M., Gibson D.I. 2002. Morphological features of Prosorhynchus crucibulum and P. aculeatus (Digenea: Bucephalidae), intestinal parasites of Conger conger (Pisces: Congridae), elucidated by scanning electron microscopy. Folia Parasitologica, 46, 96–102. http://dx.doi.org/10.14411/fp.2002.019Google Scholar

  • [19] Køie M. 1992. SEM studies of cercariae, metacercariae and adults of Pygidiopsis ardeae Køie, 1990 (Digenea, Heterophyidae). Parasitology Research, 78, 469–474. DOI: 10.1007/BF00 931565. http://dx.doi.org/10.1007/BF00931565CrossrefGoogle Scholar

  • [20] Korniychuck Y.M., Gaevskaya A.V. 2004. The first record of Aphallus tubarium (Trematoda, Cryptogonimidae) in the Black Sea. Vestnik zoologii, 38, 79–80. Google Scholar

  • [21] Lee S.H., Hong S.J., Chai J.Y., Seo B.S. 1985. Studies on intestinal trematodes in Korea. XV. Tegumental ultrastructure of Fibricola seoulensis according to developmental stages. Seoul Journal of Medicine, 26, 52–63. Google Scholar

  • [22] Matthews R.A. 1973. The life-cycle of Prosorhynchus crucibulum (Rudolphi, 1819) Odhner, 1905, and a comparison of its cercaria with that of Prosorhynchus squamatus Odhner, 1905. Parasitology, 66, 133–164. DOI: 10.1017/S003118200004 4504. http://dx.doi.org/10.1017/S0031182000044504CrossrefGoogle Scholar

  • [23] Miller T.I., Cribb TH. 2008. Family Cryptogonimidae Ward, 1917. In: Bray R.A., Gibson D.I., Jones A. Keys to Trematoda Vol. 3. CAB international and Natural Museum History, Wallingford London UK, p 51–112. Google Scholar

  • [24] Moravec F. 2002. External morphological differences between Crepidostomum farionis and Crepidostomum metoecus (Trematoda: Allocreadiidae), parasites of salmonids, as revealed by SEM. Folia Parasitologica, 49, 211–217. http://dx.doi.org/10.14411/fp.2002.037Google Scholar

  • [25] Mouahid A. 1989. Szidatia joyeuxi (Trematoda: Cyathocotylidae): morphological and tegumental changes during growth in the definitive host. Systematic Parasitology, 13, 125–134. DOI: 10.1007/BF00015221. http://dx.doi.org/10.1007/BF00015221CrossrefGoogle Scholar

  • [26] Oliver G. 1981. Etude de Microcotyle labracis Van Beneden et Hesse, 1863 (Monogenea, Polyopisthocotylea, Microcotylidae) au microscope életronique à balayage. Zeitschrift fur Parasitenkunde, 65, 235–240. DOI: 10.1007/BF00929189. http://dx.doi.org/10.1007/BF00929189CrossrefGoogle Scholar

  • [27] Ostrowski de Nũnez M.C., Arredondo N.J., Doma I.L., Gil de Pertierra A.A. 2011. Redescription of Parspina argentinensis (Szidat, 1954) (Digenea: Cryptogonimidae) from freshwater fishes (Pimelodidae) in the basins of the Paranà and La Plata Rivers, Argentina, with comments on P. bagre Pearse, 1920. Systematic Parasitology, 78, 27–40. DOI: 10.1007/s11230-010-9274-7. http://dx.doi.org/10.1007/s11230-010-9274-7Web of ScienceCrossrefGoogle Scholar

  • [28] Pandey K.C., Tewari S.K. 1984. SEM studies on Bucephalopsis karvei Bhalerao, 1937, an intestinal parasite of the fish, Xenentodon cancila (Ham.). Proceedings of the Indian Academy of Sciences, Animal Sciences, 93, 527–533. DOI: 10.1007/BF03186301. http://dx.doi.org/10.1007/BF03186301CrossrefGoogle Scholar

  • [29] Ramasamy P., Hanna R.E.B., Threadgold T. 1987. Scanning and transmission electron microscopy of the surface of Vallisia indica (Monogenea, Polyopisthocotylea). International Journal for Parasitology, 17, 1187–1195. DOI: 10.1016/0020-7519(87)90171-8. http://dx.doi.org/10.1016/0020-7519(87)90171-8CrossrefGoogle Scholar

  • [30] Reynolds E.S. 1963. The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. The Journal of Cell Biology, 17, 208–212. DOI: 10.1083/jcb.17.1.208. http://dx.doi.org/10.1083/jcb.17.1.208CrossrefGoogle Scholar

  • [31] Russell-Smith, S.M.C., Wells P.D. 1982. Ultrastructural changes in the tegument of Diplostomum spathaceum during development from metacercaria to adult. Parasitology, 84, 42–43. Google Scholar

  • [32] Scholz T. 1999. Parasites in cultured and feral fish. Veterinary Parasitology, 84, 317–335. DOI: 10.1016/S0304-4017(99)00039-4. http://dx.doi.org/10.1016/S0304-4017(99)00039-4CrossrefGoogle Scholar

  • [33] Spurr A.R. 1969. A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 31–43. DOI: 10.1016/S0022-5320(69)90033-1. http://dx.doi.org/10.1016/S0022-5320(69)90033-1CrossrefGoogle Scholar

  • [34] Sprent P., Ley J.P. 1992. Pratique des statistiques non paramétriques. Institut National de la Recherche Agronomique, Paris, 312 p. Google Scholar

  • [35] Tkach V.V., Bush S. 2010. Serpentoanisocladium sinense n.g., n. sp. (Digenea: Cryptogonimidae) from the eastern water snake Sinonatrix percarinata (Boulenger) (Serpentes: Colubridae) in Guizhou Province, China. Systematic Parasitology, 76, 205–210. DOI: 10.1007/s11230-010-9246-y. http://dx.doi.org/10.1007/s11230-010-9246-yWeb of ScienceCrossrefGoogle Scholar

  • [36] Tkach, V.V., Snyder S.D. 2003. Acanthostomum macroclemidis n. sp. (Digenea: Cryptogonimidae: Acanthostominae) from the alligator snapping turtle, Macroclemys temmincki. Journal of Parasitology, 89, 150–167. DOI: 10.1645/0022. http://dx.doi.org/10.1645/0022-3395(2003)089[0159:AMNSDC]2.0.CO;2CrossrefGoogle Scholar

  • [37] Whittington I.D., Cribb B.W., Hamwood T.E., Halliday J.A. 2000. Host-specifcity of monogenean (platyhelminth) parasites: a role for anterior adhesive areas?. International Journal for Parasitology, 30, 305–320. DOI: 10.1016/S0020-7519(00) 00006-0. http://dx.doi.org/10.1016/S0020-7519(00)00006-0CrossrefGoogle Scholar

  • [38] Williams J.B., McKenzie J. 1995. Scanning electron microscopy of Polystoma integerrimum (Monogenea, Polystomatidae). International Journal for Parasitology, 35, 335–342. DOI: 0.1016/0020-7519(94) 00137-D. http://dx.doi.org/10.1016/0020-7519(94)00137-DGoogle Scholar

  • [39] Zdarska, Z., Nebesarova J. 2003. Transmission electron microscopy of intra-tegumental sensory receptors in the forebody of Crepidostomum metoecus (Digenea: Allocreadiidae). Folia Parasitologica, 50, 215–219. DOI: 10.1007/s00436-003-0858-x http://dx.doi.org/10.14411/fp.2003.038CrossrefGoogle Scholar

  • [40] Zhou, Y., Podesta R.B. 1989. Surface spines of human blood flukes (Schistosoma mansoni) contain bundles of actin filaments having identical polarity. European Journal of Cell Biology, 48, 150–153. Google Scholar

About the article

Published Online: 2014-09-20

Published in Print: 2014-10-01

Citation Information: Acta Parasitologica, Volume 59, Issue 4, Pages 615–624, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-014-0281-8.

Export Citation

© 2014 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in