Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 59, Issue 4 (Oct 2014)

Issues

The comparison of FLOTAC, FECPAK and McMaster techniques for nematode egg counts in cattle

Antonio Bosco
  • Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, CREMOPAR Regione Campania, Naples, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Laura Rinaldi
  • Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, CREMOPAR Regione Campania, Naples, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Maurelli
  • Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, CREMOPAR Regione Campania, Naples, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vincenzo Musella / Gerald Coles / Giuseppe Cringoli
  • Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, CREMOPAR Regione Campania, Naples, Italy
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-09-20 | DOI: https://doi.org/10.2478/s11686-014-0282-7

Abstract

Three methods, FLOTAC, FECPAK and McMaster were compared for accuracy and sensitivity for counting numbers of nematode eggs in faeces of naturally infected cattle with high or low nematode egg counts. Only FLOTAC gave positive results for 12 replicates from pooled samples with low egg counts making it more sensitive than FECPAK (67%) and McMaster (41.7%). FLOTAC resulted in generally higher egg counts and lower coefficients of variation than the other two methods used. The reliability of FECPAK and McMaster is depended on the area under the slide counted. All three methods can be used for making decisions whether to treat but FLOTAC or Mini-FLOTAC should be used for faecal egg count reduction tests when lower egg counts are present.

Keywords: FecPak; McMaster; FLOTAC; nematode egg count; cattle

  • [1] Coles G.C., Bauer C., Borgsteede F.H., Geerts S., Klei T.R., Taylor M.A., Waller P.J. 1992. World association for the advancement of veterinary parasitology (W.A.A.V.P.) methods for the detection of anthelmintic resistance in nematodes of veterinary importance. Veterinary Parasitology, 44, 35–44. http://dx.doi.org/10.1016/0304-4017(92)90141-UCrossrefGoogle Scholar

  • [2] Cox D.D., Todd A.C. 1962. Survey of gastrointestinal parasitism in Wisconsin dairy cattle. Journal of the American Veterinary Medical Association, 141, 706–709. Google Scholar

  • [3] Cringoli G., Rinaldi L., Veneziano V., Capelli G., Scala A. 2004. The influence of flotation solution, sample dilution and the choice of McMaster slide area (volume) on the reliability of the Mc-Master technique in estimating the faecal egg counts of gastrointestinal strongyles and Dicrocoelium dendriticum in sheep. Veterinary Parasitology, 123, 121–131. http://dx.doi.org/10.1016/j.vetpar.2004.05.021CrossrefGoogle Scholar

  • [4] Cringoli G., Rinaldi L., Maurelli M.P., Utzinger J. 2010. FLOTAC: new multivalent techniques for qualitative and quantitative copromicroscopici diagnosis of parasites in animals and humans. Nature Protocols, 5, 503–551. DOI: 10.1038/nprot.2009.235. http://dx.doi.org/10.1038/nprot.2009.235PubMedCrossrefWeb of ScienceGoogle Scholar

  • [5] Cringoli G., Rinaldi L., Albonico M., Bergquist R., Utzinger J. 2103. Geospatial(s) tools: integration of advanced epidemiological sampling and novel diagnostics. Geospatial Health, 7, 399–404. CrossrefGoogle Scholar

  • [6] Egwang T.G., Slocombe J.O. 1982. Evaluation of the Cornell-Wisconsin centrifugal flotation technique for recoverins trichostrongylid eggs from bovine feces. Canadian Journal of Comparative Medicine, 46, 133–137. Google Scholar

  • [7] Gordon H., Whitlock H.V. 1939. A new technique for counting nematode eggs in sheep faeces. Journal Council Scientific Industrial Research, 12, 50–52. Google Scholar

  • [8] Levecke B., Rinaldi L., Charlier J., Maurelli M.P., Bosco A., Vercruysse J., Cringoli G. 2012. The bias, accuracy and precision of faecal egg count reduction test results in cattle using McMaster, Cornell-Wisconsin and FLOTAC egg counting methods. Veterinary Parasitology, 188, 194–199. DOI: 10.1016/j.vetpar.2012.03.017. http://dx.doi.org/10.1016/j.vetpar.2012.03.017CrossrefWeb of ScienceGoogle Scholar

  • [9] Levecke B., Rinaldi L., Charlier J., Maurelli M.P., Morgoglione M.E., Vercruysse, J., Cringoli G. 2011. Monitoring drug efficacy against gastrointestinal nematodes when faecal egg counts are low: do the analytic sensitivity and the formula matter? Parasitology Research, 109, 953–957. DOI: 10.1007/s00436-011-2338-z http://dx.doi.org/10.1007/s00436-011-2338-zWeb of ScienceCrossrefGoogle Scholar

  • [10] MAFF, 1986. Manual of Veterinary Parasitological Techniques, Her Majesty’s Stationary Office, London (1986) 160 pp. Google Scholar

  • [11] Mes T.H.M. 2003. Technical variability and required sample size of helminth egg isolation procedures. Veterinary Parasitology, 115, 311–320. http://dx.doi.org/10.1016/S0304-4017(03)00219-XCrossrefGoogle Scholar

  • [12] Presland S.L., Morgan E.R., Coles G.C. 2005. Counting nematode eggs in equine faecal samples. Veterinary Record, 156, 208–210. Google Scholar

  • [13] Sutherland I.A., Leathwick D.M. 2011. Anthelmintic resistance in nematode parasites of cattle: global issue? Trends in Parasitology, 27, 176–181. http://dx.doi.org/10.1016/j.pt.2010.11.008Web of ScienceCrossrefGoogle Scholar

About the article

Published Online: 2014-09-20

Published in Print: 2014-10-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-014-0282-7.

Export Citation

© 2014 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Luciana L. Dias de Castro, Carolina L.H. Abrahão, Andreia Buzatti, Marcelo B. Molento, Eduardo Bastianetto, Daniel S. Rodrigues, Luciano B. Lopes, Marcos Xavier Silva, Mariana Green de Freitas, Mario Henrique Conde, and Fernando de Almeida Borges
Veterinary Parasitology: Regional Studies and Reports, 2017, Volume 10, Page 132
[3]
D. Traversa and G. von Samson-Himmelstjerna
Small Ruminant Research, 2016, Volume 135, Page 75
[4]
M. Albonico, B. Levecke, P.T. LoVerde, A. Montresor, R. Prichard, J. Vercruysse, and J.P. Webster
Journal of Global Antimicrobial Resistance, 2015, Volume 3, Number 4, Page 229
[5]
Beatrice Divina Barda, Jennifer Keiser, and Marco Albonico
Current Tropical Medicine Reports, 2015, Volume 2, Number 4, Page 201

Comments (0)

Please log in or register to comment.
Log in