Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 59, Issue 4

Issues

A search for antiplasmodial metabolites among fungal endophytes of terrestrial and marine plants of southern India

Naveen Kaushik
  • Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Thokur Murali / Dinkar Sahal
  • Malaria Research Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ T. Suryanarayanan
Published Online: 2014-09-20 | DOI: https://doi.org/10.2478/s11686-014-0307-2

Abstract

Eighty four different fungal endophytes isolated from sea grasses (5), marine algae (36) and leaves or barks of forest trees (43) were grown in vitro and the secondary metabolites secreted by them were harvested by immobilizing them on XAD beads. These metabolites were eluted with methanol and screened using SYBR Green I assay for their antiplasmodial activity against blood stage Plasmodium falciparum in human red blood cell culture. Our results revealed that fungal endophytes belonging to diverse genera elaborate antiplasmodial metabolites. A Fusarium sp. (580, IC50: 1.94 μg ml−1) endophytic in a marine alga and a Nigrospora sp. (151, IC50: 2.88 μg ml−1) endophytic in a tree species were subjected to antiplasmodial activity-guided reversed phase high performance liquid chromatography separation. Purification led to potentiation as reflected in IC50 values of 0.12 μg ml-1 and 0.15 μg ml−1 for two of the fractions obtained from 580. Our study adds further credence to the notion that fungal endophytes are a potential storehouse for a variety of novel secondary metabolites vested with different bioactivities including some that can stall the growth of the malaria parasite.

Keywords: Endophytes; antiplasmodial metabolites; Plasmodium falciparum; antimalarial compounds; marine-derived fungi

  • [1] Aly A.H., Debbab A., Proksch P. 2011. Fungal endophytes: unique plant inhabitants with great promises. Applied Microbiology and Biotechnology, 90, 1829–1845. DOI: 10.1007/s00253-011-3270-y. http://dx.doi.org/10.1007/s00253-011-3270-yCrossrefWeb of ScienceGoogle Scholar

  • [2] Anderson T. 2009. Mapping the spread of malaria drug resistance. PLoS Medicine, 6, e1000054. DOI: 10.1371/journal.pmed.1000054. http://dx.doi.org/10.1371/journal.pmed.1000054Web of ScienceCrossrefGoogle Scholar

  • [3] Begerow D., Nilsson H., Unterseher M., Maier W. 2010. Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology, 87, 99–108. DOI: 10.1007/s00253-010-2585-4. http://dx.doi.org/10.1007/s00253-010-2585-4Web of ScienceCrossrefGoogle Scholar

  • [4] Benson D.A., Karsch-Mizrachi I., Lipman D.J., Ostell J., Sayers E.W. 2010. GenBank. Nucleic Acids Research, 38, D46–D51. DOI: 10.1093/nar/gkp1024. http://dx.doi.org/10.1093/nar/gkp1024CrossrefGoogle Scholar

  • [5] Bennett T.N., Paguio M., Gligorijevic B., Seudieu C., Kosar A.D., Davidson E., Roepe P.D. 2004. Novel, rapid, and inexpensive cell-based quantification of antimalarial drug efficacy. Antimicrobial Agents and Chemotherapy, 48, 1807–1810. DOI: 10.1128/AAC.48.5.1807-1810.2004. http://dx.doi.org/10.1128/AAC.48.5.1807-1810.2004CrossrefGoogle Scholar

  • [6] Bode H.B., Bethe B., Höfs R., Zeeck A. 2002. Big effects from small changes: possible ways to explore nature’s chemical diversity. ChemBioChem, 3, 619–627. DOI: 10.1002/1439-7633(20020703)3:7〈619::AID-CBIC619〉3.0.CO;2-9. http://dx.doi.org/10.1002/1439-7633(20020703)3:7<619::AID-CBIC619>3.0.CO;2-9CrossrefGoogle Scholar

  • [7] Bugni T.S., Ireland C.M. 2004. Marine-derived fungi: a chemically and biologically diverse group of microorganisms. Natural Product Reports, 21, 143–163. DOI: 10.1039/B301926H. http://dx.doi.org/10.1039/b301926hCrossrefGoogle Scholar

  • [8] Cao S., Clardy J. 2011. New naphthoquinones and a new δ-lactone produced by endophytic fungi from Costa Rica. Tetrahedron Letters, 52, 2206–2208. DOI: 10.1016/j.tetlet.2010.11.159. http://dx.doi.org/10.1016/j.tetlet.2010.11.159Web of ScienceCrossrefGoogle Scholar

  • [9] Cheeseman I.H., Miller B.A., Nair S., Nkhoma S., Tan A., Tan J.C., Al Saai S., Phyo A.P., Moo C.L., Lwin K.M., McGready R., Ashley E., Imwong M., Stepniewska K., Yi P., Dondorp A.M., Mayxay M., Newton P.N., White N.J., Nosten F., Ferdig M.T., Anderson T.J.C. 2012. A major genome region underlying artemisinin resistance in malaria. Science, 336, 79–82. DOI: 10.1126/science.1215966. http://dx.doi.org/10.1126/science.1215966Web of ScienceCrossrefGoogle Scholar

  • [10] Chinworrungsee M., Kittakoop P., Isaka M., Rungrod A., Tanticharoen M., Thebtaranonth Y. 2001. Antimalarial halorosellinic acid from the marine fungus Halorosellinia oceanica. Bioorganic & Medicinal Chemistry Letters, 11, 1965–1969. DOI: http://dx.doi.org/10.1016/S0960-894X(01)00327-4. http://dx.doi.org/10.1016/S0960-894X(01)00327-4Google Scholar

  • [11] Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791. http://dx.doi.org/10.2307/2408678Google Scholar

  • [12] Flewelling A.J., Johnson J.A., Gray C.A. 2013. Antimicrobials from the marine algal endophyte Penicillium sp. Natural Product Communications, 8, 373–374. Google Scholar

  • [13] Gardes M., Bruns T.D. 1993. ITS primers with enhanced specificity for basidiomycetes — application to the identification of mycorrhizae and rusts. Molecular Ecology, 2, 113–118. DOI: 10.1111/j.1365-294X.1993.tb00005.x. http://dx.doi.org/10.1111/j.1365-294X.1993.tb00005.xCrossrefGoogle Scholar

  • [14] Heinig U., Scholz S., Jennewein S. 2013. Getting to the bottom of taxol biosynthesis by fungi. Fungal Diversity, 60, 161–170. DOI: 10.1007/s13225-013-0228-7 http://dx.doi.org/10.1007/s13225-013-0228-7CrossrefWeb of ScienceGoogle Scholar

  • [15] Jones E.B., Stanley S.J., Pinruan U. 2008. Marine endophyte sources of new chemical natural products: a review. Botanica Marina, 51, 163–170. DOI: 10.1515/BOT.2008.028. http://dx.doi.org/10.1515/BOT.2008.028CrossrefWeb of ScienceGoogle Scholar

  • [16] Kjer J., Debbab A., Aly A.H., Proksch P. 2010. Methods for isolation of marine-derived endophytic fungi and their bioactive secondary products. Nature Protocols, 5, 479–490. DOI: 10.1038/nprot.2009.233. http://dx.doi.org/10.1038/nprot.2009.233Web of ScienceCrossrefGoogle Scholar

  • [17] Ko T.W.K., Stephenson S.L., Bahkali A.H., Hyde K.D. 2011. From morphology to molecular biology: can we use sequence data to identify fungal endophytes? Fungal Diversity, 50, 113–120. DOI: 10.1007/s13225-011-0130-0. http://dx.doi.org/10.1007/s13225-011-0130-0Web of ScienceCrossrefGoogle Scholar

  • [18] Kongsaeree P., Prabpai S., Sriubolmas N., Vongvein C., Wiyakrutta S. 2003. Antimalarial dihydroisocoumarins produced by Geotrichum sp., an endophytic fungus of Crassocephalum crepidioides. Journal of Natural Products, 66, 709–711. DOI: 10.1021/np0205598. http://dx.doi.org/10.1021/np0205598CrossrefGoogle Scholar

  • [19] Lambros C., Vanderberg J.P. 1979. Synchronization of Plasmodium falciparum erythrocytic stages in culture. The Journal of Parasitology, 65, 418–420. http://dx.doi.org/10.2307/3280287Google Scholar

  • [20] Mosmann T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63. DOI: 10.1016/0022-1759(83)90303-4. http://dx.doi.org/10.1016/0022-1759(83)90303-4CrossrefGoogle Scholar

  • [21] Murali T.S., Thirunavukkarasu N., Govindarajulu M.B., Suryanarayanan T.S. 2013. Fungal communities of symptomless barks of tropical trees. Mycosphere, 4, 635–645. DOI: 10.5943/mycosphere/4/2/15. CrossrefGoogle Scholar

  • [22] Nilsson R.H., Ryberg M., Kristiansson E., Abarenkov K., Larsson K.-H., Kõljalg U. 2006. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One, 1, e59. DOI: 10.1371/journal.pone.0000059. http://dx.doi.org/10.1371/journal.pone.0000059CrossrefGoogle Scholar

  • [23] OBrian G.R., Georgianna D.R., Wilkinson J.R., Yu J., Abbas H.K., Bhatnagar D., Cleveland T.E., Nierman W., Payne G.A. 2007. The effect of elevated temperature on gene transcription and aflatoxin biosynthesis. Mycologia, 99, 232–239. DOI: 10.3852/mycologia.99.2.232. http://dx.doi.org/10.3852/mycologia.99.2.232Web of ScienceCrossrefGoogle Scholar

  • [24] Ortholand J.-Y., Ganesan A. 2004. Natural products and combinatorial chemistry: back to the future. Current Opinion in Chemical Biology, 8, 271–280. DOI: 10.1016/j.cbpa.2004.04.011. http://dx.doi.org/10.1016/j.cbpa.2004.04.011CrossrefGoogle Scholar

  • [25] Paddon C.J., Westfall P.J., Pitera D.J., Benjamin K., Fisher K., McPhee D., Leavell M.D., Tai A., Main A., Eng D., et al. 2013. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature, 496, 528–236. DOI: 10.1038/nature12051. http://dx.doi.org/10.1038/nature12051Web of ScienceCrossrefGoogle Scholar

  • [26] Raghukumar C. 2008. Marine fungal biotechnology: an ecological perspective. Fungal Diversity, 31, 19–35. Google Scholar

  • [27] Sachin N., Manjunatha B.L., Mohana Kumara P., Ravikanth G., Shweta S., Suryanarayanan T.S., Ganeshaiah K.N., Uma Shaanker R. 2013. Do endophytic fungi possess pathway genes for plant secondary metabolites? Current Science, 104, 178–182. Google Scholar

  • [28] Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425. Web of ScienceGoogle Scholar

  • [29] Schoch C.L., Seifert K.A., Huhndorf S., Robert V., Spouge J.L., Levesque C.A., Chen W., Bolchacova E., Voigt K., Crous P.W. 2012. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109, 6241–6246. DOI: 10.1073/pnas.1117018109. http://dx.doi.org/10.1073/pnas.1117018109Web of ScienceCrossrefGoogle Scholar

  • [30] Schueffler A., Anke T. 2011. Antimicrobial compounds from tree endophytes. In: (Eds. A.M. Pirttilä and A.C. Frank) Endophytes of Forest Trees: Biology and Applications. New York, Springer, pp. 265–294. DOI: 10.1007/978-94-007-1599-8_17. http://dx.doi.org/10.1007/978-94-007-1599-8_17CrossrefGoogle Scholar

  • [31] Schulz B., Draeger S., Rheinheimer J., Siems K., Loesgen S., Bitzer J., Schloerke O., Zeeck A., Kock I., Hussain H. 2008. Screening strategies for obtaining novel, biologically active, fungal secondary metabolites from marine habitats. Botanica Marina, 51, 219–234. DOI: 10.1515/BOT.2008.029. http://dx.doi.org/10.1515/BOT.2008.029CrossrefWeb of ScienceGoogle Scholar

  • [32] Schulz B., Römmert A.-K., Dammann U., Aust H.-J., Strack D. 1999. The endophyte-host interaction: a balanced antagonism? Mycological Research, 103, 1275–1283. DOI: 10.1017/S0953756299008540. http://dx.doi.org/10.1017/S0953756299008540CrossrefGoogle Scholar

  • [33] Shah N.K., Dhillon G.P.S., Dash A.P., Arora U., Meshnick S.R., Valecha N. 2011. Antimalarial drug resistance of Plasmodium falciparum in India: changes over time and space. The Lancet Infectious Diseases, 11, 57–64. DOI: 10.1016/S1473-3099(10)70214-0. http://dx.doi.org/10.1016/S1473-3099(10)70214-0CrossrefGoogle Scholar

  • [34] Smilkstein M., Sriwilaijaroen N., Kelly J.X., Wilairat P., Riscoe M. 2004. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrobial Agents and Chemotherapy, 48, 1803–1806. DOI: 10.1128/AAC.48.5.1803-1806.2004. http://dx.doi.org/10.1128/AAC.48.5.1803-1806.2004CrossrefGoogle Scholar

  • [35] Suryanarayanan T.S., Murali T.S., Thirunavukkarasu N., Govinda Rajulu M.B., Venkatesan G., Sukumar R. 2011. Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, southern India. Biodiversity and Conservation, 20, 913–928. DOI: 10.1007/s10531-011-0004-5. http://dx.doi.org/10.1007/s10531-011-0004-5Web of ScienceCrossrefGoogle Scholar

  • [36] Suryanarayanan T.S., Thirunavukkarasu N., Govindarajulu M.B., Sasse F., Jansen R., Murali T.S. 2009. Fungal endophytes and bioprospecting. Fungal Biology Reviews, 23, 9–19. DOI: 10.1016/j.fbr.2009.07.001. http://dx.doi.org/10.1016/j.fbr.2009.07.001CrossrefGoogle Scholar

  • [37] Suryanarayanan T.S., Venkatachalam A., Thirunavukkarasu N., Ravishankar J.P., Doble M., Geetha V. 2010. Internal mycobiota of marine macroalgae from the Tamilnadu coast: distribution, diversity and biotechnological potential. Botanica Marina, 53, 457–468. DOI: 10.1515/bot.2010.045. http://dx.doi.org/10.1515/bot.2010.045Web of ScienceCrossrefGoogle Scholar

  • [38] Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739. DOI: 10.1093/molbev/msr121. http://dx.doi.org/10.1093/molbev/msr121Web of ScienceGoogle Scholar

  • [39] Tejesvi M.V., Pirttilä A.M. 2011. Potential of tree endophytes as sources for new drug compounds. In: (Eds. A.M. Pirttilä and A.C. Frank) Endophytes of Forest Trees: Biology and Applications. New York, Springer, pp. 295–311. DOI: 10.1093/molbev/msr121. http://dx.doi.org/10.1007/978-94-007-1599-8_18CrossrefGoogle Scholar

  • [40] Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680. DOI: 10.1093/nar/22.22.4673. http://dx.doi.org/10.1093/nar/22.22.4673CrossrefGoogle Scholar

  • [41] Trager W., Jensen J.B. 1976. Human malaria parasites in continuous culture. Science, 193, 673–675. DOI: 10.1126/science.781840. http://dx.doi.org/10.1126/science.781840CrossrefGoogle Scholar

  • [42] Weber D. 2009. Endophytic fungi, occurrence and metabolites. In: (Eds. T. Anke and D. Weber) The Mycota XV Physiology and Genetics. Berlin, Springer-Verlag, pp. 153–195. DOI: 10.1007/978-3-642-00286-1_8. http://dx.doi.org/10.1007/978-3-642-00286-1_8CrossrefGoogle Scholar

  • [43] Westfall P.J., Pitera D.J., Lenihan J.R., Eng D., Woolard F.X., Regentin R., Horning T., Tsuruta H., Melis D.J., Owens A., et al. 2012. Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin. Proceedings of the National Academy of Sciences, 109, E111–E118. DOI: 10.1073/pnas.1110740109. http://dx.doi.org/10.1073/pnas.1110740109Web of ScienceCrossrefGoogle Scholar

  • [44] White N.J. 2008. Qinghaosu (artemisinin): the price of success. Science, 320, 330–334. DOI: 10.1126/science.1155165. http://dx.doi.org/10.1126/science.1155165Web of ScienceCrossrefGoogle Scholar

  • [45] White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: (Eds. M.A. Innis, D.H. Gelfand, J.J. Sninsky and T.J. White) PCR protocols: a guide to methods and applications. New York, Academic Press, pp. 315–322. http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1Google Scholar

  • [46] WHO World Malaria Report. 2011. Dec. 2011. http://www.who.int/mediacentre/factsheets/fs094. Google Scholar

  • [47] Wright A.D., Lang-Unnasch N. 2005. Potential antimalarial lead structures from fungi of marine origin. Planta Medica, 71, 964–966. DOI: 10.1055/s-2005-864181. http://dx.doi.org/10.1055/s-2005-864181CrossrefGoogle Scholar

About the article

Published Online: 2014-09-20

Published in Print: 2014-10-01


Citation Information: Acta Parasitologica, Volume 59, Issue 4, Pages 745–757, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.2478/s11686-014-0307-2.

Export Citation

© 2014 W. Stefański Institute of Parasitology, PAS. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. BY-NC-ND 3.0

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Joël Ateba, Rufin Toghueo, Angelbert Awantu, Brice Mba’ning, Sebastian Gohlke, Dinkar Sahal, Edson Rodrigues-Filho, Etienne Tsamo, Fabrice Boyom, Norbert Sewald, and Bruno Lenta
Journal of Fungi, 2018, Volume 4, Number 2, Page 70
[2]
Lu Yan, Haobin Zhao, Xixi Zhao, Xiaoguang Xu, Yichao Di, Chunmei Jiang, Junling Shi, Dongyan Shao, Qingsheng Huang, Hui Yang, and Mingliang Jin
Applied Microbiology and Biotechnology, 2018
[3]
Rufin Marie Kouipou Toghueo, Dinkar Sahal, Íñigo Zabalgogeazcoa, Bill Baker, and Fabrice Fekam Boyom
Parasitology Research, 2018
[4]
Trichur S. Suryanarayanan and Nagamani Thirunavukkarasu
Mycology, 2017, Page 1
[5]
Amalia Indah Prihantini and Sanro Tachibana
Asian Pacific Journal of Tropical Biomedicine, 2017, Volume 7, Number 2, Page 110

Comments (0)

Please log in or register to comment.
Log in