Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 60, Issue 1

Issues

Cloning and expression of apyrase gene from Ancylostoma caninum in Escherechia coli

Ying Qiao
  • College of Ocean and Earth Sciences, Xiamen University, Xiamen 361005, Fujian Province, People’s Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Theerakamol Pengsakul
  • Corresponding author
  • Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-30 | DOI: https://doi.org/10.1515/ap-2015-0008

Abstract

Apyrase encoding metal-ions activated plasma membrane protease is present in animal and plant tissues. This enzyme can hydrolyze ADP and ATP pyrophosphate bond, resulting in AMP and free phosphate groups, and plays an important role for insects and parasites to evade host immune system. However localization and function of apyrase in the canine hookworm, Ancylostoma caninum, remains unknown. To analyze apyrase gene in A. caninum (a eukaryotic parasitic hookworm), a pair of primers was designed according to the previous EST data. The full-length cDNA of apyrase gene was amplified from A. caninum by RT-PCR. The partial cDNA of apyrase encodes 249 amino acid protein was expressed in Escherechia coli. The recombinant protein was induced to express under proper conditions and the molecular size was as expected. The recombinant protein was purified. The transcripts of apyrase in different stages of A. caninum were analyzed by the Real-time PCR assay, and Immuno-localization assays were used to research the protein expression in different stages of A. caninum

Keywords: Ancylostoma caninum; apyrase; clone; real-time PCR; expression; Immuno-localization

References

  • Barros F.S., De Menezes L.F., Pinheiro A.A.S. et al. 2000. Ectonucleotide Diphosphohydrolase Activities in Entamoeba histolytica. Archives of Biochemistry and Biophysics, 375, 304-314. DOI: 10.1006/abbi.1999.1592CrossrefGoogle Scholar

  • Berredo-Pinho M., Peres-Sampaio C.E., Chrispim P.P. et al. 2001. A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence. Archives of Biochemistry and Biophysics, 391, 16-24, DOI: 10.1006/abbi.2001.2384CrossrefGoogle Scholar

  • Bisaggio D.F., Peres-Sampaio C.E., Meyer-Fernandes J.R. et al. 2003. Ecto-ATPase activity on the surface of Trypanosoma cruzi and its possible role in the parasite-host cell interaction. Parasitology research, 91, 273-282. DOI: 10.1007/s00436-003-0965-8CrossrefGoogle Scholar

  • Bours M.J., Swennen E.L., Di Virgilio F. et al. 2006. Adenosine 5’- triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacology and Therapeutics, 112, 358-404. DOI: 10.1016/j.pharmthera.2005. 04.013CrossrefGoogle Scholar

  • Champagne D.E., Smartt C.T., Ribeiro J.M. et al. 1995. The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5’-nucleotidase family. Proceeding of the National Academy of Science USA, 92, 694-698. DOI: 10.1073/pnas.92.3.694Google Scholar

  • Charlab R., Valenzuela J.G., Rowton E.D. et al. 1999. Toward an understanding of the biochemical and pharmacological complexity of the saliva of a hematophagous sand fly Lutzomyia longipalpis. Proceeding of the National Academy of Science USA, 96, 15155-15160. DOI: 10.1073/pnas. 96.26.15155CrossrefGoogle Scholar

  • Cross M.L., Cupp M.S., Cupp E.W. et al. 1993. Modulation of murine immunological responses by salivary gland extract of Simulium vittatum (Diptera: Simuliidae). Journal of Medical Entomology, 30, 928-935Google Scholar

  • D LeBel G.G.P., S Phaneuf P. St-Jean, 1980. Characterization and purification of a calcium-sensitive ATP diphosphohydrolase from pig pancreas. Journal of Biological Chemistry, 255, 1227-1233 Google Scholar

  • de Jesus J.B., Podlyska T.M., Hampshire A. et al. 2002. Characterization of an ecto-phosphatase activity in the human parasite Trichomonas vaginalis. Parasitology Research, 88, 991-997. DOI: 10.1007/s00436-001-0583-2CrossrefGoogle Scholar

  • Deirdre M. Murphy V.V.I., Terence L. Kirley. 2003. Bacterial Expression and Characterization of a Novel, Soluble, Calcium- Binding, and Calcium-Activated Human Nucleotidase. Biochemistry, 42, 2412-2421. DOI: 10.1021/bi026763b CrossrefGoogle Scholar

  • Devader C., Webb R.J., Thomas G.M.H. et al. 2006. Xenopus apyrase (xapy), a secreted nucleotidase that is expressed during early development. Gene, 367, 135-141. DOI: 10. 1016/j.gene.2005.10.014CrossrefGoogle Scholar

  • Failer B.U., Braun N., Zimmermann H. 2002. Cloning, expression, and functional characterization of a Ca(2+)-dependent endoplasmic reticulum nucleoside diphosphatase. Journal of Biological Chemistry, 277, 36978-36986. DOI: 10.1074/jbc. M201656200CrossrefGoogle Scholar

  • Gounaris K., Selkirk M.E. 2005. Parasite nucleotide-metabolizing enzymes and host purinergic signalling. Trends in Parasitology, 21, 17-21, DOI: 10.1016/j.pt.2004.10.005CrossrefGoogle Scholar

  • Gounaris K., Selkirk M.E., Sadeghi S.J. 2004. A nucleotidase with unique catalytic properties is secreted by Trichinella spiralis. Molecular and Biochemical Parasitology, 136, 257-264. DOI: 10.1016/j.molbiopara.2004.04.008CrossrefGoogle Scholar

  • Guan SH L.H., Yang D.L., Lu M.J., Roggendorf M., Schlaak J. 2005. Establishment of a new low-density cDNA macroarray and the application in the activity of IFN against HBV. Chinese journal of experimental and clinical virology, 19, 236-239Google Scholar

  • Knowles A.F., Isler R.E., Reece J.F. 1983. The common occurrence of ATP diphosphohydrolase in mammalian plasma membranes. Biochimica et Biophysica Acta, 731, 88-96. DOI: 10. 1016/0005-2736(83)90401-7CrossrefGoogle Scholar

  • Komoszynski M., Wojtczak A. 1996. Apyrases (ATP diphosphohydrolases, EC 3.6.1.5): function and relationship to ATPases. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 1310, 233-241, DOI: 10.1016/0167-4889(95)00 135-2CrossrefGoogle Scholar

  • Law J.H., Ribeiro J.M., Wells M.A. 1992. Biochemical insights derived from insect diversity. Annual review of biochemistry, 61, 87-111, DOI: 10.1146/annurev.bi.61.070192.000511CrossrefGoogle Scholar

  • Lemos A.P., Peres-Sampaio C.E., Guimaraes-Motta H. et al. 2000. Effects of naturally occurring polyols and urea on mitochondrial F0F1ATPase. Journal Zeitschrift für Naturforschung C, 55, 392-398Google Scholar

  • Lewis-Carl S., Kirley T.L. 1997. Immunolocalization of the Ecto-ATPase and Ecto-apyrase in Chicken Gizzard and Stomach: PURIFICATION AND N-TERMINAL SEQUENCE OF THE STOMACH ECTO-APYRASE. Journal of Biological Chemistry, 272, 23645-23652. DOI: 10.1074/jbc.272.38.23645CrossrefGoogle Scholar

  • Marcus A.J., Safier L.B. 1993. Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. The FASEB Journal, 7, 516-522Google Scholar

  • Meyer-Fernandes J.R., Dutra P.M., Rodrigues C.O. et al. 1997. Mg-dependent ecto-ATPase activity in Leishmania tropica. Archives of Biochemistry and Biophysics, 341, 40-46. DOI: 10.1006/abbi.1997.9933CrossrefGoogle Scholar

  • Nakaar V., Beckers C.J., Polotsky V. et al. 1998. Basis for substrate specificity of the Toxoplasma gondii nucleoside triphosphate hydrolase. Molecular and Biochemical Parasitology, 97, 209-220. DOI: 10.1016/S0166-6851(98)00153-4CrossrefGoogle Scholar

  • Nisbet A.J., Zarlenga D.S., Knox D.P. et al. 2011. A calcium-activated apyrase from Teladorsagia circumcincta: an excretory/ secretory antigen capable of modulating host immune responses? Parasite Immunology, 33, 236-243. DOI: j.1365-10.1111/3024.2011.01278.x Web of ScienceGoogle Scholar

  • Peres-Sampaio C.E., Palumbo S.T., Meyer-Fernandes J. 2001. An ecto-ATPase activity present in Leishmania tropica stimulated by dextran sulfate. Journal Zeitschrift für Naturforschung C, 56, 820-825Google Scholar

  • Plesner L. 1995. Ecto-ATPases: identities and functions. International review of cytology, 158, 141-214. DOI: 10.1016/ S0074-7696(08)62487-0CrossrefGoogle Scholar

  • Ribeiro J. 1987. Role of saliva in blood-feeding by arthropods. Annual review of entomology, 32, 463-478. DOI: 10.1146/ annurev.en.32.010187.002335CrossrefGoogle Scholar

  • Smith T.M., Hicks-Berger C.A., Kim S. et al. 2002. Cloning, expression, and characterization of a soluble calcium-activated nucleotidase, a human enzyme belonging to a new family of extracellular nucleotidases. Archives of Biochemistry and Biophysics, 406, 105-115. DOI: 10.1016/S0003-9861(02) 00420-4CrossrefGoogle Scholar

  • Strobel R.S., Nagy A.K., Knowles A.F. et al. 1996. Chicken Oviductal Ecto-ATP-Diphosphohydrolase: PURIFICATION AND CHARACTERIZATION. Journal of Biological Chemistry, 271, 16323-16331. DOI: 10.1074/jbc.271.27.16323CrossrefGoogle Scholar

  • Ting-Fang Wang G.G. 1996. CD39 Is an Ecto-(Ca2+,Mg2+)-apyrase. Journal of Biological Chemistry, 271, 9898-9901. DOI: 10.1074/jbc.271.17.9898CrossrefGoogle Scholar

  • Trautmann A. 2009. Extracellular ATP in the immune system: more than just a” danger signal”. Science Signaling, 2, pe6. DOI: 10.1126/scisignal.256pe6Web of ScienceCrossrefGoogle Scholar

  • Uccelletti D., Pascoli A., Farina F. et al. 2008. APY-1, a novel Caenorhabditis elegans apyrase involved in unfolded protein response signalling and stress responses. Molecular Biology of the Cell, 19, 1337-1345. DOI: 10.1091/mbc.E07-06-0547CrossrefWeb of ScienceGoogle Scholar

  • Valenzuela J.G., Belkaid Y., Rowton E. et al. 2001. The salivary apyrase of the blood-sucking sand fly Phlebotomus papatasi belongs to the novel Cimex family of apyrases. The Journal of Experimental Biology, 204, 229-237Google Scholar

  • Williamson A.L., Brindley P.J., Abbenante G. et al. 2002. Cleavage of hemoglobin by hookworm cathepsin D aspartic proteases and its potential contribution to host specificity. The FASEB Journal, 16, 1458-1460. DOI: 10.1096/fj.02-0181fje CrossrefGoogle Scholar

  • Yoshida M., Amano T. 1995. A common topology of proteins catalyzing ATP-triggered reactions. FEBS Letters, 359, 1-5. DOI: 0014-5793(94)01438-7 Google Scholar

  • Zimmermann H., Braun N. 1996. Extracellular metabolism of nucleotides in the nervous system. Journal of Autonomic Pharmacology, 16, 397-400, DOI: 10.1111/j.1474-8673.1996. tb00062.x CrossrefGoogle Scholar

About the article

Received: 2014-03-24

Revised: 2014-09-09

Accepted: 2014-09-09

Published Online: 2014-12-30

Published in Print: 2014-03-01


Citation Information: Acta Parasitologica, Volume 60, Issue 1, Pages 54–64, ISSN (Online) 1896-1851, DOI: https://doi.org/10.1515/ap-2015-0008.

Export Citation

© 2015.Get Permission

Comments (0)

Please log in or register to comment.
Log in