Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 60, Issue 1 (Mar 2014)

Issues

Phylogeography analysis and molecular evolution patterns of the nematode parasite Heligmosomum mixtum based on mitochondrial DNA sequences

Hela Sakka
  • Corresponding author
  • Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Département de Biologie, faculté des Sciences de Tunis. Unversité Tunis El Manar 2092 El Manar, Tunis, Tunisie
  • Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisie
  • INRA, UMR CBGP 1062, Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex, France;
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Heikki Henttonen / Ghada Baraket
  • Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Département de Biologie, faculté des Sciences de Tunis. Unversité Tunis El Manar 2092 El Manar, Tunis, Tunisie;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Salhi-Hannachi Amel
  • Laboratoire de Génétique Moléculaire, Immunologie et Biotechnologie. Département de Biologie, faculté des Sciences de Tunis. Unversité Tunis El Manar 2092 El Manar, Tunis, Tunisie
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Johan Michaux
  • INRA, UMR CBGP 1062, Campus international de Baillarguet, CS 30016, F-34988 Montferrier-sur-Lez cedex, France
  • Conservation Genetics Unit, University of Liège, Institute of Botany (Bat. 22) 4000 Liège, Belgium
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2014-12-30 | DOI: https://doi.org/10.1515/ap-2015-0011

Abstract

Mitochondrial DNA was explored to study phylogeography of the nematode parasite Heligmosomum mixtum and elucidate molecular evolution pattern of cytochrome b gene. The size of cyt b gene ranged from 511 bp to 591 bp and the average of GC contents was 28.9%. The overall transition/transversion ratio R was 5.773 indicating that the transitions are more frequent than transversion. The aligned sequences allowed identifying 54 mtDNA haplotypes among the 119 examined individuals. The genetic divergence registered among the populations of H. mixtum was low (0.3% to 1.5%). Neighbor-joining and maximum Likelihood trees evidenced a huge polytomy and unstructured phylogeographic pattern among the studied populations. The demographic analyses tend to evidence a recent and rapid expansion of H. mixtum. Our results imply a positive selection and the genetic hitchhiking effect is unlikely. Parameters performed supported scenario of sweep selection and recent expansion of H.mixtum populations. Both positive selection and demographic histories have jointly contributed to the observed patterns of nucleotide diversity and haplotypes structure. The comparison of the phylogeographical pattern of H. mixtum with the one of its most common rodent host M. glareolus, confirmed a strong incongruence between the two species. These results strongly suggest that the parasite would not be specific to M. glareolus and that it would switch easily from one rodent species to another. The mitochondrial diversity seems to be unstructured with any biogeographic repartition of the variability and that the genetic structure of H. mixtum is probably associated with weak host specificity.

Keywords: Mitochondrial DNA; Cytochrome b gene; Phylogeography; Myodes glareolus; Nematode parasite; Heligmosomum mixtum

References

  • Asakawa M. 1987. Genus Heligmosomoides Hall, 1916 (Heligmosomoidae: Nematoda) from the Japanese wood mice, Apodemus spp. III. The life-cycle of Heligmosomoides kurilensis kobayashii (Nadtochii, 1966) in ICR mice and preliminary experimental infection to jirds. Journal of the College of Dairying, 12, 131-140Google Scholar

  • Avise J.C. 2000. Phylogeography. The History and Formation of Species. Harvard University Press, Cambridge, MA Ballard J.W.O., Whitlock M.C. 2004. The incomplete natural history of mitochondria. Molecular Ecology, 13, 729-744. DOI: 10. 1046/j.1365-294X.2003.02063.x Barrett L.G., Thrall P.H., CrossrefGoogle Scholar

  • Burdon J.J., Linde C.C. 2008. Life history determines genetic structure and evolutionary potential of host-parasite interactions. Trends in Ecology and Evolution, 23, 678-685. DOI: 10.1016/j.tree.2008.06.017CrossrefGoogle Scholar

  • Bauchau V., Chaline J. 1987. Variabilite de la troisieme molaire inferieure de Clethrionomys glareolus (Arvicolidae, Rodentia) et sa signification evolutive. Mammalia, 51, 587-598CrossrefGoogle Scholar

  • Biek R., Drummond A.J., Poss M. 2006. A virus reveals population structure and recent demographic history of its carnivore host. Science, 311, 538-541. DOI: 10.1126/science.1121360CrossrefGoogle Scholar

  • Buckley T.R., Simon C., Chambers G.K. 2001. Phylogeography of the New Zealand cicada Maoricicada campbelli based on mitochondrial DNA sequences: ancient clades associated with Cenozoic environmental change. Evolution, 55, 1395-1407. DOI: 10.1111/j.0014-3820.2001.tb00661.x PubMedCrossrefGoogle Scholar

  • Burban C., Petit R.J., 2003. Phylogeography of maritime pine inferred with organelle markers having contrasted inheritance. Molecular Ecology, 12, 1487-1495. DOI: 10.1046/j.1365-294X.2003.01817.x PubMedCrossrefGoogle Scholar

  • Cordy J.M. 1991. Paleoecology of the late glacial and early postglacial of Belgium and neighbouring areas. In: The late glacial in Northwest Europe: human Adaptation and environmental Change at the End of the Pleistocene (eds Barton N, Robers AJ, Roe DA), pp.40-47. Google Scholar

  • Council for British Archaeology, London Criscione C.D., Poulin R., Blouin M.S. 2005. Molecular ecology of parasites: elucidating ecological and microevolutionary processes. Molecular Ecology, 14, 2247-2257. DOI: 10.1111/ j.1365-294X.2005.02587.x CrossrefGoogle Scholar

  • Deffontaine V., Libois R., Kotlik P., Sommer R., Nieberding C., Paradis E., Searle J.B., Michaux J.R. 2005. Beyond the Mediterranean peninsulas: evidence of central European glacial refugia for a temperate forest mammal species, the bank vole (Clethrionomys glareolus). Molecular Ecology, 14, 1727-1739. DOI: 10.1111/j.1365-294X.2005.02506.x CrossrefPubMedGoogle Scholar

  • Deffonatine V., Ledevin R., Fontaine M.C., Quere J-P., Renaud S., Libois R., Michaux J.R. 2009. A relict bank vole lineage highlights the biogeographic history of the Pyrenean region in Europe. Molecular Ecology, 18, 2489-2502. DOI: 10.1111/ j.1365-294X.2009.04162.x CrossrefGoogle Scholar

  • Dybdahl M.F., Lively C.M. 1996. The geography of co-evolution: comparative population structures for a snail and its nematode parasite. Evolution, 50, 2264-2275CrossrefGoogle Scholar

  • Emerson B.C., Oromi P., Hewitt G.M. 2000. Tracking colonization and diversification of insect lineages on islands: mitochondrial DNA phylogeography of Tarphius canariensis Coleoptera: Colydidae) on the Canary Islands. Proceedings of the Royal Society of London. Series B, Biological Sciences, 267, 2199-2205Google Scholar

  • Eswaran V., Harpending H., Roger A.R. 2005. Genomics refutes and exclusively African origin of humans. Journal of Human Evolution, 49, 1-18. DOI: 10.1016/j.jhevol Ewens W.J. 1972. The sampling theory of selective neutral alleles. Theoretical Population Biology, 3, 87-112. DOI: 10.1016/ 0040-5809(72)90035-4CrossrefGoogle Scholar

  • Excoffier L., Laval G., Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary bioinformatics, 1, 47-50Google Scholar

  • Fu Y.X., Li W.H. 1993. Statistical tests of neutrality of mutations. Genetics, 133, 693-709Google Scholar

  • Galbreath K.E., Eric P., Hoberg E.P. 2012. Return to Beringia: parasites reveal cryptic biogeographic history of North American pikas. Proceedings of the Royal Society B, 279, 371-378. DOI: 10.1098/rspb.2011.0482CrossrefGoogle Scholar

  • Gouy de Bellocq J., Ferte H., Depaquit J., Justine J.L., Tillier A., Durette-Desset M.C. 2001. Phylogeny of the Trichostrongylina (Nematoda) inferred from 28S rDNA sequences. Molecular Phylogenetics and Evolution, 19, 430-442. DOI: 10.1006/mpev. 2001.0925CrossrefGoogle Scholar

  • Gouy de Bellocq J., Morand S., Feliu C. 2002. Patterns of parasite species richness of western Paleartic micro-mammals: island effects. Ecography, 25, 173-183CrossrefGoogle Scholar

  • Gouy de Bellocq J., Sara M., Casanova J.C., Feliu C., Morand S. 2003. A comparaison of the strcuture of helminth communities in the woodmouse, Apodemus sylvaticus, on islands of the Western mediterranean and continental Europe. Parasitology Research, 90, 64-70. DOI: 10.1007/s00436-002-0806-1CrossrefGoogle Scholar

  • Grikienienne J. 2005. Investigations into endoparasites of small mammals in the environs of Lake Drukdiai. Acta Zoologica Lituanica, 15, 109-114CrossrefGoogle Scholar

  • Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696-704. DOI: 10.1080/10635150390235520CrossrefPubMedGoogle Scholar

  • Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series, 41, 95-98Google Scholar

  • Harpending H.C. 1994. Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Human Biology 66, 591-600Google Scholar

  • Haukisalmi V., Henttonen H., Tenora F. 1988. Population dynamics of common and rare helminths in cyclic vole populations. Journal of Animal Ecology, 57, 807-825CrossrefGoogle Scholar

  • Haukisalmi V., Henttonen H. 1993. Populations dynamics of taenia polyacantha metacestodes in the bank vole Clethrionomys glareolus. Annales Zoologici Fennici, 30, 81-84Google Scholar

  • Haukisalmi V., Henttonen H., Vikman P. 1996. Variability of sex ratio, mating probability and egge production in an intestinal nematode in its fluctuating host population International Journal for Parasitology, 26, 755-764. DOI: 10.1016/0020-7519(96)00058-6CrossrefGoogle Scholar

  • Hudson R.R., Salatkin M., Maddison W.P. 1992. Estimation of levels of gene flow from DNA sequence data. Genetics, 132, 583-590PubMedGoogle Scholar

  • Jones P.H., Britten H.B. 2010. The absence of concordant population genetic structure in the black-tailed prairie dog and the flea, Oropsylla hirsuta, with implications for the spread of Yersinia pestis. Molecular Ecology, 19, 2038-2049. DOI: 10.1111/j.1365-294X.2010.04634.x PubMedCrossrefGoogle Scholar

  • Jukes T.H., Cantor C.R. 1969. Evolution of protein molecules. In: Munroled, H.N. (Ed.), Mammalian Protein Metabolism. Academy Press, New York, pp. 31-132Google Scholar

  • Kia E.B., Shahryary-Rad E., Mohebali M., Mahmoudi M., Mobedi I., Zahabiun F., Zarei Z., Miahipoor A., Mowlavi Gh., Akhavan A.A., Vatandoost’ H. 2010. Endoparasites of Rodents and Their Zoonotic Importance in Germi, Dashte-Mogan, Ardabil Province, Iran. Iranian Journal of Parasitology, 5, 15-20Google Scholar

  • Koressaar T., Remm M. 2007. Enhancements and modifications of primer design program Primer3 . Bioinformatics, 23, 1289-1291. DOI: 10.1093/bioinformatics/btm091 PubMedCrossrefGoogle Scholar

  • Lessa E.P., Cook J.A., Patton J.L. 2003. Genetic footprints of demographic expansion in North America, but not Amazonia, during the Late Quaternary. Proceedings of the National Academy of Sciences of the United States of America, 100, 10331-10334. DOI: 10.1073/pnas.1730921100CrossrefGoogle Scholar

  • Librado P., Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451-1452. DOI: 10.1093/bioinformatics/btp187CrossrefGoogle Scholar

  • Lynch M., Crease T. 1990. The analysis of population survey data on DNA sequence variation. Molecular Biology and Evolution , 7, 377-394Google Scholar

  • Mavarez J., Pointier J-P., David P., Delay B., Jarne P. 2002. Genetic differentiation, dispersal and mating system in the schistosome- transmitting freshwater snail Biomphalaria glabrata. Heredity, 89, 258-265. DOI: 10.1038/sj.hdy.6800127CrossrefPubMedGoogle Scholar

  • Mazeika V., Paulauskas A., Balciauskas L. 2003. New data on the helminth fauna of rodents of Lithuania. Acta Zoologica Lituanica, 13, 41-47. DOI: 10.1080/13921657.2003.10512542CrossrefGoogle Scholar

  • McCoy K., Boulinier T., Tirard C., Michalakis Y. 2003. Host-dependent genetic structure of parasite populations: differential dispersal of seabird tick host races. Evolution, 57, 288-296. DOI: 10.1111/j.0014-3820.2003.tb00263.x CrossrefPubMedGoogle Scholar

  • McCoy K., Boulinier T., Tirard C. 2005. Comparative host-parasite population structures: disantangling prospecting and dispersal in the black-legged kittiwake Rissae tridactyla. Molecular Ecology, 14, 2825-2838. DOI: 10.1111/j.1365-294X.2005.02631.x CrossrefGoogle Scholar

  • Mulvey M., Aho J.M., Lydeard C. 1991. Comparative population genetic structure of a parasite (Fascioloides magna) and its definitive host. Evolution, 45, 1628-1640. DOI: 10.2307/2409784CrossrefGoogle Scholar

  • Nadler S.A., Hafner M.S. 1990. Genetic differentiation among chewing louse populations (Mallaphaga: Trichodectidae) in a pocket gopher contact zone (Rodentia: Geomyidae). Evolution, 44, 942-951CrossrefGoogle Scholar

  • Nieberding C., Morand S., Libois R., Michaux J.R. 2004. A parasite reveals cryptic phylogeographic history of its host. Proceedings of the Royal Society of London. Series B, 271, 2559-2568. DOI: 10.1098/rspb.2004.2930CrossrefGoogle Scholar

  • Nieberding C., Libois R., Douady S., Morand S., Michaux J.R. 2005. Phylogeography of a nematode (Heligmosomoides polygyrus) in the western Palearctic region: persistence of northern cryptic populations during ice ages? Molecular Ecology, 14, 765-779. DOI: 10.1111/j.1365-294X.2005.02440.x PubMedCrossrefGoogle Scholar

  • Nieberding C.M., Olivieri I. 2007. Parasites: proxies for host genealogy and ecology? Trends in Ecology and Evolution, 22, 156-165. DOI: 10.1016/j.tree.2006.11.012CrossrefGoogle Scholar

  • Nieberding C., Durette-Desset M.C., Vanderpoorten A., Casanova J.C., Ribas A., Deffontaine V., Feliu C., Morand S., Libois R., Michaux J.R. 2008. Geography and host biogeography matter for understanding the phylogeography of a parasite. Molecular Phylogenetics and Evolution, 47, 538-554. DOI:10.1016/j.ympev.2008.01.028CrossrefGoogle Scholar

  • Nei M. 1973. Analysis of gene diversity in subdivided populations. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321-3323Google Scholar

  • Nei M., Tajima F. 1983. Maximum likelihood estimation of the number of nucleotide substitutions from restriction sites data. Genetics 105, 207-217Google Scholar

  • N’Zobadila G. 1994. Biologie d’Heligmosomoides polygyrus polygyrus (Dujardin, 1845) (Nematoda-Trichostrongylina). Comparaison avec les especes proches et sa sous speciation americaine. These de Doctorat. Museum National d’Histoire Naturelle, pp. 183Google Scholar

  • Petit R.J., Duminil J., Fineshi S., Hampe A., Salvini D., Vendramin G.V. 2005. Comparative organization of chloroplast, mitochondrial and nuclear diversity in plant populations. Molecular Ecology, 14, 689-701. DOI: 10.1111/j.1365-294X.2004.02410.x PubMedCrossrefGoogle Scholar

  • Parker M.A., Spoerke J.M. 1998. Geographic structure of lineage associations in a plant-bacterial mutualism. Journal of Evolutionary Biology, 11, 549-562. DOI: 10.1046/j.1420-9101. 1998.11050549.x CrossrefGoogle Scholar

  • Posada D., Crandall K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817-818. DOI: 10.1093/bioinformatics/ 14.9.817PubMedCrossrefGoogle Scholar

  • Price P.W. 1980. Evolutionary Biology of Parasites. Princeton University Press, Princeton, New Jersey, USA Ramos-Onsins S.E., Rozas J. 2002. Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092-2100Google Scholar

  • Rogers A.R., Harpending H. 1992. Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552-569Google Scholar

  • Saitou N., Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425Google Scholar

  • Schulthesis A.S., Weigt L.A., Hendricks A.C. 2002. Gene flow, dispersal, and nested clade analysis among populations of the stonefly Peltoperla tarteri in the southern Appalachians. Molecular Ecology, 11, 317-327. DOI: 10.1046/j.1365-294X.2002.01445.x CrossrefGoogle Scholar

  • Slatkin M., Hudson R.R. 1991. Pairwise comparaisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 12, 555-562Google Scholar

  • Spitzenberger F. 1999. Clethrionomys glareolus. In: The Atlas of European Mammals (eds Mitchell-Jones AJ, Amori G, Bogdanowicz. W et al.), Academic Press, London. pp. 212-213Google Scholar

  • Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585-595 PubMedGoogle Scholar

  • Tamura K., Nei M., Kumar S. 2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proceedings of the National Academy of Sciences of the United States of America, 101, 11030-11035Google Scholar

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739. DOI: 10.1093/molbev/msr121CrossrefGoogle Scholar

  • Trewick S.A., Wallis G.P. 2001. Bridging the ‘beech-gap’: New Zealand invertebrate phylogeography implictes Pleistocen glaciation and Pliocene isolation. Evolution, 55, 2170-2180PubMedGoogle Scholar

  • Wickstrom L.M., Haukisalmi V., Varis S., Hantula J., Fedorov V.B., Henttonen H. 2003. Phylogeography of the circumpolar Paranoplocephala arctica species complex (Cestoda: Anoplocephalidae) parasitizing collared lemmings (Dicrostonyx spp.). Molecular Ecology, 12, 3259-3371. DOI: 10.1046/ j.1365-294X.2003.01985.x CrossrefGoogle Scholar

  • Whiteman N.K., Kimball R.T., Parker P.G. 2007. Co-phylogeography and comparative population genetics of the threatened Galapagos hawk and three ectoparasite species: ecology shapes population histories within parasite communities. Molecular Ecology, 16, 4759-4773. DOI: 10.1111/j.1365-294X.2007. 03512.x PubMedCrossrefGoogle Scholar

  • Wright S. 1951. The genetical structure of populations. Ann. Eugen., 15, 323-354PubMedGoogle Scholar

  • Zhigileva O.N. 2011.Correlation between Biodiversity Indices of Small Mammals and Their Helminths in West Siberian Ecosystems. Contemporary Problems of Ecology, 4, 416-422 CrossrefGoogle Scholar

About the article

Received: 2014-07-14

Revised: 2014-08-29

Accepted: 2014-09-09

Published Online: 2014-12-30

Published in Print: 2014-03-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, DOI: https://doi.org/10.1515/ap-2015-0011.

Export Citation

© 2015. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in