Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 60, Issue 2


Ultrastructural characterization of Acarispora falculifera n.gen., n.sp., a new microsporidium (Opisthokonta: Chytridiopsida) from the feather mite Falculifer rostratus (Astigmata: Pterolichoidea)

Renate Radek
  • Corresponding author
  • Free University of Berlin, Institute of Biology/Zoology, Konigin-Luise-Str. 1–3, 14195 Berlin, Germany
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Madlen Kariton
  • Free University of Berlin, Institute of Biology/Zoology, Konigin-Luise-Str. 1-3, 14195 Berlin, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacek Dabert
  • Adam Mickiewicz University, Faculty of Biology, Department of Animal Morphology, Umultowska 89, 61-614 Poznan, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerd Alberti
  • Ernst Moritz Arndt University of Greifswald, Zoological Institute and Museum, Department of General and Systematic Zoology, Johann-Sebastian-Bach-Str. 11/12, 17489 Greifswald, Germany
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/ap-2015-0029


Only about 20 species of microsporidia have been described from mites. All except one species produce typical spores with a long polar filament and a polaroplast. This paper is the first study of an atypical microsporidium infection in a feather mite (Falculifer rostratus). The infection of the pigeon feather mite is restricted to the colon epithelium where it leads to hypertrophy of the concerned cells. During sporogony, a multinucleate plasmodial aggregate is formed within a sporont (endogenous sporogony resulting in a polysporophorous vesicle). The cisterns delimiting the single sporoblasts later form the spore walls. Sporogonial stages are in direct contact to the host cell cytoplasm. Merogonial stages were not present. Spores are tiny (3.6 μm × 2.6 μm), broad oval in form and monokaryotic. The spore wall of mature spores consists of a three-layered endospore and a thin, electron-dense, wavy exospore. The polar filament is anisofilar and completely coiled in 3-4 turns. In cross-sections, it has a star-like appearance because the electron-dense core forms rounded compartments of lucent material at its surface. In superficial sections, this results in a honeycomb-like pattern. A polaroplast is missing. The polar filament arises subapically at a polar sac that lacks an internal anchoring disk. These atypical spore structures clearly classify the species from the feather mite as a member of the order Chytridiopsida. It could not be clearly affiliated to one of the known genera, so we created a new genus, Acarispora, with the species A. falculifera.

Keywords: Acarispora; arthropod; Chytridiopsida; Falculiferidae; microsporidia; mite


  • Alberti G., Dabert J. 2012. Fine structure of the feather mite Falculifer rostratus (Buchholz 1869) (Acari, Falculiferidae): Gnathosoma, digestive system and supracoxal glands. Zoologica 158, Schweitzerbart Science Publishers, 150 pp.Google Scholar

  • Alberti G., Thaler-Knoflach B. 2013. Chelicerata. In: (Eds. W. Westheide and G. Rieger) Spezielle Zoologie, Teil 1: Einzeller und Wirbellose Tiere, 3rd edition. Springer Spektrum, Berlin, 493-541Google Scholar

  • Beard C.B., Butler J.F., Becnel J.J. 1990. Nolleria pulicis n. gen., n. sp. (Microsporidia: Chytridiopsidae), a microsporidian parasite of the cat flea, Ctenocephalides felis (Siphonaptera: Pulicidae). Journal of Protozoology, 37, 90-99. DOI: 10.1111/ j.1550-7408.1990.tb05876.x CrossrefGoogle Scholar

  • Becnel J.J., Jeyaprakash A., Hoy M.A., Shapiro A. 2002. Morphological and molecular characterization of a new microsporidian species from the predatory mite Metaseiulus occidentalis (Nesbitt) (Acari, Phytoseiidae). Journal of Invertebrate Pathology, 79, 63-172Google Scholar

  • Bjørnson S. 2009. Natural enemies of mass-reared predatory mites (family Phytoseiidae) used for biological pest control. In: (Eds. J. Bruin and L.P.S. van der Geest) Diseases of Mites and Ticks. Springer, Berlin, 299-306. DOI: 10.1007/s10493-008-9187-1CrossrefGoogle Scholar

  • Burke J.M. 1970. A microsporidian in the epidermis of Eisenia foetida (Oligochaeta). Journal of Invertebrate Pathology, 16, 145-147. DOI: 10.1016/0022-2011(70)90222-3 CrossrefGoogle Scholar

  • Canning E.U., Vavra J. 2000. Phylum Microsporida Balbiani, 1882. In: (Eds. J.J. Lee, G.F. Leedale and P. Bradbury) The Illustrated Guide to the Protozoa, 2nd edition, Allen Press Inc., Lawrence, Society of Protozoologists, 39-126Google Scholar

  • Dabert M., Witalinski W., Kazmierski A., Olszanowski Z., Dabert J. 2010. Molecular phylogeny of acariform mites (Acari, Arachnida): strong conflict between phylogenetic signal and longbranch attraction artifacts. Molecular Phylogenetics and Evolution, 56, 222-241. DOI: 10.1016/j.ympev.2009.12.020CrossrefGoogle Scholar

  • Desportes I., Le Charpentier Y., Galian A., Bernard F., Cochand- Priollet B., Lavergne A., Ravisse P., Midigliani R. 1985. Occurrence of a new microsporidan: Enterocytozoon bieneusi n. g., n. sp., in the enterocytes of a human patient with AIDS. Journal of Protozoology, 32, 250-254. DOI: 10.1111/j.1550-7408.1985.tb03046.x CrossrefGoogle Scholar

  • Field I.A. 1924. Biology and economic value of the sea mussel, Mytilus edulis. Bulletin of the United States Bureau of Fisheries, 38, 127-260Google Scholar

  • Issi I.V. 1986. Microsporidia as a phylum of parasitic protozoa. Protozoologiya (Leningrad). 10, 6-136, (in Russian, English translation by J.J. Lipa published by The Division of Microsporidia, Society of Invertebrate Pathology (1991) 1-109Google Scholar

  • Jirovec O. 1940. Zur Kenntnis einiger in Oligochaten parasitierenden Protisten. I. Archiv für Protistenkunde, 94, 80-92Google Scholar

  • Kalavati C., Narasimhamurti C.C. 1977. Steinhausia spraguei n. sp. a microsporidian parasite of the excretory cells found in the fluid from renal appendages of Sepia elliptica. Rivista di Parassitologia, 38, 271-275Google Scholar

  • Klimov P.B., OConnor B. 2013. Is permanent parasitism reversible? - Critical evidence from early evolution of house dust mites. Systematic Biology, 62, 411-423. DOI: 10.1093/sysbio/syt008CrossrefWeb of SciencePubMedGoogle Scholar

  • Larsson J.I.R. 1980. Insect pathological investigations on Swedish Thysanura. II. A new microsporidian parasite of Petrobius brevistylis (Microcoryphia, Machilidae); description of the species and creation of two new genera and a new family. Protistologica, 16, 85-101Google Scholar

  • Larsson J.I.R. 1993. Description of Chytridiopsis trichopterae n. sp. (Microspora, Chytridiopsidae), a microsporidian parasite of the caddis fly Polycentropus flavomaculatus (Trichoptera, Polycentropodidae), with comments on the relationships between the families Chytridiopsidae and Metchnikovellidae. Journal of Eukaryotic Microbiology, 40, 37-48. DOI: 10.1111/ j.1550-7408.1993.tb04880.x CrossrefGoogle Scholar

  • Larsson J.I.R. 2014. The primitive microsporidia. In: (Eds. L.M. Weiss and J.J. Becnel) Microsporidia: Pathogens of Opportunity. Wiley Blackwell, Hoboken, 605-634Google Scholar

  • Larsson J.I.R., Steiner M.Y., Bjørnson S. 1997. Intexta acarivora gen. et sp. n. (Microspora: Chytridiopsidae) - Ultrastructural study and description of a new microsporidian parasite of the forage mite Tyrophagus putrescentiae (Acari: Acaridae). Acta Protozoologica, 36, 295-304Google Scholar

  • Leger L., Hollande A.C. 1917. Sur un nouveau Protiste a facies de Chytridiopsis, parasite des ovules de l’huitre. Comptes Rendus des Séances de la Société Biologie et de ses Filiales, 80, 61-64Google Scholar

  • Manier J.-F., Ormieres, R. 1968. Ultrastructure de quelques stades de Chytridiopsis socius Schn., parasite de Blaps lethifera Marsh. (Coleopt., Tenebr.). Protistologica, 4, 181-185Google Scholar

  • Mironov S.V., Proctor H.C. 2008. The probable association of feather mites of the genus Ingrassia (Analgoidea: Xolalgidae) with the blue penguin Eudyptula minor (Aves: Sphenisciformes) in Australia. Journal of Parasitology, 94, 1243-1248. DOI: 10.1645/GE-1579.1Web of ScienceCrossrefGoogle Scholar

  • Ormieres R., Sprague V. 1973. A new family, new genus, and new species allied to the microsporida. Journal of Invertebrate Pathology, 21, 224-240CrossrefGoogle Scholar

  • Purrini K., Weiser J. 1985. Ultrastructural study of the microsporidian Chytridiopsis typographi (Chytridiopsida: Microspora) infecting the bark beetle, Ips typographus (Scolytidae: Coleoptera), with new data on spore dimorphism. Journal of Invertebrate Pathology, 45, 66-74. DOI:10.1016/0022-2011(85)90051-5CrossrefGoogle Scholar

  • Puytorac P. de, Tourret M. 1963. Etude de kystes d´origin parasitaire (Microsporidies ou Gregarines) sur la paroi interne du corps des Vers Megascolecidae. Annales de Parasitologie Humaine et Comparée (Paris), 38, 861-874Google Scholar

  • Reynolds E.S. 1963. The use of lead citrate at high pH as an electron- opaque stain in electron microscopy. Journal of Cell BioIogy, 17, 208-212CrossrefGoogle Scholar

  • Richards C.S., Sheffield H.G. 1971. Unique host relations and ultrastructure of a new microsporidium of the genus Coccospora infecting Biomphalaria glabrata. Proceedings of the IV International Colloquium on Insect Pathology, 439-452Google Scholar

  • Richardson K.C., Jarrett L.J., Finke E.H. 1960. Embedding in epoxy resin for ultrathin sectioning in electron microscopy. Stain Technology, 35, 313-323PubMedGoogle Scholar

  • Schutte C., Dicke M. 2009. Verified and potential pathogens of predatory mites (Acari: Phytoseiidae). In: (Eds. J. Bruin and L.P.S. van der Geest) Diseases of Mites and Ticks. Springer, Berlin, 307-328. DOI: 10.1007/978-1-4020-9695-2_25CrossrefGoogle Scholar

  • Spurr A.R. 1969. A low-viscosity resin embedding medium for electron microscopy. Journal of Ultrastructure Research, 26, 31-43CrossrefGoogle Scholar

  • Sprague V., Ormieres R., Manier J.-F. 1972. Creation of a new genus and a new family in the Microsporida. Journal of Invertebrate Pathology, 20, 228-231CrossrefGoogle Scholar

  • Sprague V. 1977a. Classification and phylogeny of the microsporidia. In: (Eds. L.A. Bulla and T.C. Cheng) Comparative Pathobiology, Vol. 2, Systematics of the Microsporidia. Plenum Press, New York, 1-30CrossrefGoogle Scholar

  • Sprague V. 1977b. Annotated list of species of Microsporidia. In: (Eds. L.A. Bulla and T.C. Cheng) Comparative Pathobiology, Vol. 2, Systematics of the Microsporidia. Plenum Press, New York, 31-334Google Scholar

  • Sprague V. 1982. Microspora. In: (Ed. S.P. Parker) Synopsis and Classification of Living Organisms, Vol. 1. McGraw- Hill Book Co., New York, 589-594Google Scholar

  • Sprague V., Ormieres R., Manier J.F. 1972. Creation of a new genus and a new family in the Microsporida. Journal of Invertebrate Pathology, 20, 228-231. DOI: 10.1016/0022-2011(72) 90146-2CrossrefGoogle Scholar

  • Sprague V., Becnel J.J., Hazard E.I. 1992. Taxonomy of phylum Microspora. Critical Reviews in Microbiology, 18, 285-395. DOI:10.3109/10408419209113519CrossrefGoogle Scholar

  • Szollosi D. 1971. Development of Pleistophora sp. (Microsporidian) in eggs of the polychaete Armandia brevis. Journal of Invertebrate Pathology, 18, 1-15CrossrefGoogle Scholar

  • Tregouboff G. 1913. Sur un Chytridiopside nouveau, Chytridioides schizophylli n. g., n. sp., parasite de l´intestine de Schizophyllum mediterraneum Latzel. Archives de Zoologie Expérimentale et Générale, 52, 25-31Google Scholar

  • Van der Geest L.P.S., Elliot S.L., Breeuwer J.A.J., Beerling E.A.M. 2000. Diseases of mites. Experimental and Applied Acarology, 24, 497-560. DOI: 10.1023/A:1026518418163.CrossrefWeb of ScienceGoogle Scholar

  • Vavra J. 1976. Structure of the Microsporidia. In: (Eds. A. Bulla A. and T.C. Cheng) Comparative Pathobiology, Vol. 1. Plenum Press, New York, 1-85Google Scholar

  • Voronin V.N. 2001. On a macrotaxonomy of the phylum Microsporidia. Parazitologiya, 35, 35-44Google Scholar

  • Weiser J. 1977. Contribution to the classification of microsporidia. Vestnik Ceskoslovenske Spolecnosti Zoologicke, 41, 308-321Google Scholar

  • Weiser J. 1983. Taxonomy of the order Chytridiopsida (Microsporidia). Journal of Protozoology, 30, A75. DOI: 10.1111/j.1550-7408.1983.tb01402.x CrossrefGoogle Scholar

About the article

Received: 2014-09-11

Revised: 2014-11-05

Accepted: 2014-11-27

Published Online: 2015-03-25

Published in Print: 2015-06-01

Citation Information: Acta Parasitologica, Volume 60, Issue 2, Pages 200–210, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0029.

Export Citation

© 2015 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Daniele Corsaro, Claudia Wylezich, Danielle Venditti, Rolf Michel, Julia Walochnik, and Rudolf Wegensteiner
Parasitology Research, 2018
Daniele Corsaro, Rolf Michel, Julia Walochnik, Danielle Venditti, Karl-Dieter Müller, Bärbel Hauröder, and Claudia Wylezich
Parasitology Research, 2016, Volume 115, Number 8, Page 3003

Comments (0)

Please log in or register to comment.
Log in