Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 60, Issue 2


Detection of high percentage of Trypanosoma cruzi infection, the etiologic agent of Chagas disease, in wild populations of Colombian Caribbean triatomines

Melisa Eyes Escalante
  • Universidad del Atlántico, Facultad de Ciencias Básicas, Grupo de Investigación Biodiversidad del Caribe Colombiano, Colombia
  • SUE Caribe, Doctorado en Medicina Tropical, Colombia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Doris Gomez / Luz Alba Silvera
  • Universidad del Atlántico, Facultad de Ciencias Básicas, Grupo de Investigación Biodiversidad del Caribe Colombiano, Colombia
  • SUE Caribe, Doctorado en Medicina Tropical, Colombia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gittith Sánchez
  • Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Santiago, Chile
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Juan Venegas
  • Corresponding author
  • Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Santiago, Chile
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/ap-2015-0044


In Colombia it is estimated that about 900,000 persons are infected with T. cruzi. There are 25 triatomine species and 5 of them have been reported infected with T. cruzi in the Colombian Caribbean region. In order to obtain more information about the triatomine populations in this region, 89 wild triatomines were collected from four Colombian Departments. The most frequent specie collected was Rhodnius pallescens (65%), followed by Rhodnius prolixus (20%), Panstrongylus geniculatus (10.1%) and Triatoma dimidiata (1%), found in Bolivar, Córdoba, Atlántico/Sucre, and Bolívar Departments, respectively. The majority of triatomines (95.5%) were captured in the arboreal ecotope and 76.4% were found infected with T. cruzi. Interestingly, some of these triatomine species were captured in Departments in which they had not previously been reported and also new finding of triatomine species infected with T. cruzi. These results are relevant, because they can be consequence of a continued geographical expansion of this parasite, not only in the Colombian Caribbean region, but even in all Latin America. The information presented here will contribute in the surveillance and control strategies of the vectors infected with T. cruzi that circulate in four department of Colombian Caribbean region in order to interrupt the transmission to human dwelling.

Keywords: Chagas disease; Triatomine; Caribbean Region; Trypanosoma cruzi


  • Angulo V., Esteban L. 2011. Nueva trampa para la captura de triatominos en hábitats silvestres y peridomésticos. Biomédica, 31, 264-268CrossrefGoogle Scholar

  • Angulo V.M., Esteban L., Luna K.P. 2012. Attalea butyracea próximas a las viviendas como posible fuente de infestación domiciliaria por Rhodnius prolixus (Hemiptera: Reduviidae) en los Llanos Orientales de Colombia. Biomédica, 32,1-13CrossrefGoogle Scholar

  • Brisse S., Barnabé C., Tibayrenc M. 2000. Identification of six Trypanosoma cruzi phylogenetic lineages by random amplified polymorphic DNA and multilocus enzyme electrophoresis. International Journal for Parasitology, 30, 35-44Google Scholar

  • Britto C., Cardoso M.A., Vanni C.M.M., Hasslocher-Moreno A., Xavier S., Oeleman W., Santoro A., Pimimez C., Morel C.M., Wincker P. 1995. Polymerase chain reaction detection of Trypanosoma cruzi in human blood samples as a tool for diagnosis and treatment evolution. Parasitology, 110, 241-247Google Scholar

  • Cantillo-Barraza O., Chaverra D., Marcet P., Arboleda-Sánchez S., Triana-Chávez O. 2014. Trypanosoma cruzi transmission in a Colombian Caribbean region suggests that secondary vectors play an important epidemiological role. Parasites & Vectors 2014, 7:381Web of ScienceGoogle Scholar

  • De Freitas J.M., Augusto-Pinto L., Pimenta J.R., Bastos-Rodrigues L., Goncalves V.F., Teixeira S.M.R., Chiari E., Junqueira A.C.V., Fernandes O., Macedo A.M., Machado C.R., Pena, S.D.J. 2006. Ancestral genomes, sex, and the population structure of Trypanosoma cruzi. PLOS Pathogens, 2, 226-235CrossrefGoogle Scholar

  • Garcia E.S., Gonzalez M.S., Azambuja P. 1991.Biological Factors Involving Trypanosoma cruzi Life Cycle in the Invertebrate Vector, Rhodnius prolixus. Memorias do Instituto Oswaldo Cruz, Rio de Janeiro, 94, 213-216CrossrefGoogle Scholar

  • Garcia E.S., Ratcliffe N.A., Whitten M.M., Gonzalez M.S., Azambuja P. 2007. Exploring the role of insect host factors in the dynamics of Trypanosoma cruzi-Rhodnius prolixus interactions. Journal of Insect Physiology, 53,11-21Web of ScienceCrossrefGoogle Scholar

  • Guhl F., Pinto N., Aguilera G. 2005. Distribution and eco-epidemiology of triatomine vectors of Chagas disease in Colombia Memories XII. Colombian Congress of Parasitology and Tropical Medicine. Biomedical, 25, 76-79Google Scholar

  • Guhl F., Aguilera G., Pinto N., Vergara D. 2007. Actualización de la distribución geográfica y ecoepidemiología de la fauna de triatominos (Reduviidae: Triatominae) en Colombia. Biomédica, 27, 143-162CrossrefGoogle Scholar

  • Guhl F. 2013. Actual Situation.Chagas disease in the Americas. Memoirs XXI Latin American Congress of Parasitology, Guayaquil - Ecuador, pags 25-41Google Scholar

  • Kollien A.H., Goncalves T.C.M., De Azambuja P., Garcia E.S., Schaub G.A. 1998. The effect of azadirachtin on fresh isolates of Trypanosoma cruzi in different species of triatomines. Parasitology Research, 84, 286-290Google Scholar

  • Lent H., Wygodzinsky P. 1979. Revision of the Triatominae: Hemiptera: Reduviidae and their significance as vectors of Chagas disease. Bulletin of American Museum Natural History, 163,123-520Google Scholar

  • Llewelyn M.S., Lewis M.D., Acosta N., Yeo M., Carrasco H.J., Vargas J., Torrico F., Miles M.A., Gaunt M.W. 2009. Trypanosoma cruzi IIc: phylogenetic and phylogeographic insights from sequence and microsatellite analysis and potential impact on emergent Chagas disease. PlosNegleted Tropical Disease, 3, 1-10Google Scholar

  • Maestre R., Eyes M. 2011. Actualización de la presencia y distribución de triatominos en el departamento del Atlántico-Colombia: 2003-2010. Boletín de Malariología y Salud Ambiental, Vol. LII, Nº 1Google Scholar

  • Marcili A., Lima L., Valente V.C., Valente S.A., Batista J.S., Junqueira A.C.V., Souza A.I., Rosa J.A., Campaner M., Lewis M.D., Llewellyn M.S., Miles M.A., Teixeira M.M.G. 2009. Comparative phylogeography of Trypanosoma cruzi TCIIc: new host, association with terrestrial ecotopes, and spacial clustering. Infection Genetics and Evolution, 9, 1265-1274CrossrefWeb of ScienceGoogle Scholar

  • Miles M.A., Llewellyn M.S., Lewis M.D., Yeo M., Baleela R., Fitzpatrick S., Gaunt M.W., Mauricio I.L. 2009. The molecular epidemiology and phylogeography of Trypanosoma cruzi and parallel research on Leishmania: looking back and to the future. Parasitology, 136, 1509-1528Web of ScienceGoogle Scholar

  • Molina J.A., Gualdrón L.E., Brochero H.L., Olano V.A., Barrios D., Guhl F. 2000. Distribución actual e importancia epidemiológica de las especies de triatominos (Reduviidae: Triatominae) en Colombia. Biomedica, 20, 344-360CrossrefGoogle Scholar

  • Montilla M., Soto H., Parra E., Torres M., Carrillo P., Lugo L., Colorado J., Arias M.T. 2011. Infestation by triatomine bugs in indigenous communities of Valledupar, Colombia. Rev Saúde Pública, 45, 1-7 OPS-WHO-TDR. (2007). Reporte sobre la enfermedad de Chagas. Buenos Aires Argentina pp. 1-69Google Scholar

  • Parra G., Angulo V., Jaramillo N., Restrepo M. 2009. Triatominos (Hemipetra: Reduviidae) de la Sierra Nevada de Santa Marta, Colombia. Aspectos epidemiológicos, entomológicos y de distribución. Revista Ces Medicina, Volumen 23 No 1Google Scholar

  • Ramos-Ligonio A., Torres-Montero J., López-Monteon A., Dumonteil E. 2012. Extensive diversity of Trypanosoma cruzi discrete typing units circulating in Triatoma dimidiata from central Veracruz, México. Infection, Genetics and Evolution, 12, 1341-1343 Web of ScienceGoogle Scholar

  • Romaña C.A., Pizarro J.C., Rodas E., Guilbert E. 1999. Palm trees as ecological indicators of risk areas for Chagas disease. Transactions of the royal society of tropical medicine and higiene, 93, 594-595Google Scholar

  • Tibayrenc M., Ayala F.J. 1988. Isozyme variability in Trypanosoma cruzi, the agent of Chagas’ disease: genetical, taxonomical, and epidemiological significance. Evolution, 42, 277-292CrossrefGoogle Scholar

  • Tibayrenc M. 2003. Genetic subdivisions within Trypanosoma cruzi(Discrete Typing Units) and their relevance for molecular epidemiology and experimental evolution. Kinetoplastid Biology and Disease, 3, 2:12Google Scholar

  • Torres J.P., Ortiz S., Munoz S., Solari A. 2004. Trypanosoma cruzi isolates from Chile are heterogeneous and composed of mixed populations when characterized by schizodeme and Southern analyses. Parasitology, 128, 161-168Google Scholar

  • Vallejo G.A., Guhl F., G.A., Schaub G.A. 2009. Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions. Acta Tropica, 110, 137-147Web of ScienceGoogle Scholar

  • Venegas J., Miranda S., Coñoepan W., Pichuantes S., Jercic M.I., González C., Gajardo M., Apt W., Arribada A., Sánchez G. 2010. Microsatellite marker analysis shows differentiation among Trypanosomacruzi populations of peripheral blood and dejections of Triatomainfestans fed on the same chronic chagasic patients. Parasitology Research, 107, 855-863Web of ScienceGoogle Scholar

  • Venegas J., Rojas T., Díaz F., Miranda S., Jercic M.I., González C., Coñoepán W., Pichuantes S., Rodríguez J., Gajardo M., Sánchez G. 2011. Geographical structuring of Trypanosoma cruzi populations from Chilean Triatoma infestans triatomines and their genetic relationship with other Latino American counterparts. Annals of Tropical Medicine & Parasitology, 105, 625-646Web of ScienceGoogle Scholar

  • Yeo M., Acosta N., Llewellyn M., Sanchez H., Adamson S., Miles G. A.J., Lopez E., Gonzalez N., Patterson J.S., Gaunt M.W. 2005. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosomacruzi II, including hybrids. International Journal for Parasitology, 35, 225-233Google Scholar

  • Zingales B., Miles M.A., Campbell D.A., Tibayrenc M., Macedo A.M., Teixeira M.M., Schijman A.G., Llewellyn M.S., Lages- Silva E., Machado C.R., Andrade S.G., Sturm N.R. 2012. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection Genetic and Evolution, 12, 240-253 Web of SciencePubMedGoogle Scholar

About the article

Received: 2014-05-23

Revised: 2014-12-24

Accepted: 2015-01-20

Published Online: 2015-03-25

Published in Print: 2015-06-01

Citation Information: Acta Parasitologica, Volume 60, Issue 2, Pages 315–321, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0044.

Export Citation

© 2015 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Maria Augusta Dario, Tassiane Emanuelle Servare Andrade, Claudiney Biral dos Santos, Blima Fux, Adeilton Alves Brandão, and Aloísio Falqueto
Parasite, 2018, Volume 25, Page 59
Carolina Hernández, Camilo Salazar, Helena Brochero, Aníbal Teherán, Luz Stella Buitrago, Mauricio Vera, Hugo Soto, Zulibeth Florez-Rivadeneira, Sussane Ardila, Gabriel Parra-Henao, and Juan David Ramírez
Parasites & Vectors, 2016, Volume 9, Number 1
Juliane Saab de Lima, Fabiana Lopes Rocha, Fernanda Moreira Alves, Elias Seixas Lorosa, Ana Maria Jansen, and Guilherme de Miranda Mourão
Journal of Vector Ecology, 2015, Volume 40, Number 2, Page 379
David Jácome-Pinilla, Eduwin Hincapie-Peñaloza, Mario I. Ortiz, Juan David Ramírez, Felipe Guhl, and Jorge Molina
Parasites & Vectors, 2015, Volume 8, Number 1

Comments (0)

Please log in or register to comment.
Log in