Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 60, Issue 2 (Jun 2015)

Issues

Chitin, a key factor in immune regulation: lesson from infection with fungi and chitin bearing parasites

Klaudia Brodaczewska
  • Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Katarzyna Donskow-Łysoniewska
  • Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maria Doligalska
  • Corresponding author
  • Department of Parasitology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/ap-2015-0047

Abstract

The probability of infection with fungi, as well as parasitic nematodes or arthropods may increase in overcrowded population of animals and human. The widespread overuse of drugs and immunosuppressants for veterinary or medical treatment create an opportunity for many pathogenic species. The aim of the review is to present the common molecular characteristics of such pathogens as fungi and nematodes and other chitin bearing animals, which may both activate and downregulate the immune response of the host. Although these pathogens are evolutionary distinct and distant, they may provoke similar immune mechanisms. The role of chitin in these phenomena will be reviewed, highlighting the immune reactions that may be induced in mammals by this natural polymer.

Keywords: Chitin; innate immunity; parasitic infections; immunoregulation

References

  • Alvarez F.J. 2014. The effect of chitin size, shape, source and purification method on immune recognition. Molecules, 19, 4433-4451. DOI: 10.3390/molecules19044433CrossrefGoogle Scholar

  • Araujo A.C., Souto-Padron T., de Souza W. 1993. Cytochemical localization of carbohydrate residues in microfilariae of Wuchereria bancrofti and Brugia malayi. Journal of Histochemistry and Cytochemistry, 41, 571-578. DOI: 10.1177/41. 4.8450196CrossrefGoogle Scholar

  • Arnold K., Brydon L.J., Chappell L.H., Gooday G.W. 1993. Chitinolytic activities in Heligmosomoides polygyrus and their role in egg hatching. Molecular and Biochemical Parasitology, 58, 317-323. DOI: 10.1016/0166-6851(93)90054-2CrossrefGoogle Scholar

  • Bajaj G., Van Alstine W.G., Yeo Y. 2012. Zwitterionic chitosan derivative, a new biocompatible pharmaceutical excipient, prevents endotoxin-mediated cytokine release. PLoS ONE, 7, e30899. DOI: 10.1371/journal.pone.0030899CrossrefGoogle Scholar

  • Bass D.A., Szejda P. 1979. Mechanisms of killing of newborn larvae of Trichinella spiralis by neutrophils and eosinophils killing by generation of hydrogen peroxide in vitro. The Journal of Clinical Investigation, 64, 1558-1564. DOI: org/10.1172/ JCI109616CrossrefGoogle Scholar

  • Brodaczewska K., Doligalska M. 2012. In vivo stimulation of peritoneal cells by chitosan administered in drinking water to mice. Progress on Chemistry and Application of Chitin and its Derivatives, 17, 107-112Google Scholar

  • Brodaczewska K., Doligalska M. 2013. Differential effects of low and high molecular weight chitosan administered intraperitoneally to mice infected with Heligmosomoides polygyrus. Progress on Chemistry and Application of Chitin and its Derivatives, 18, 77-84Google Scholar

  • Bueter C.L., Specht C.A., Levitz S.M. 2013. Innate Sensing of Chitin and Chitosan. Plos Pathogens, 9, e1003080. DOI: 10.1371/ journal.ppat.1003080CrossrefGoogle Scholar

  • Canali M.M., Porporatto C., Pilar A.M., Bianco I.D., Correa S.G. 2010. Signals elicited at the intestinal epithelium upon chitosan feeding contribute to immunomodulatory activity and biocompatibility of the polysaccharide. Vaccine, 28, 5718-5724. DOI: 10.1016/j.vaccine.2010.06.027CrossrefGoogle Scholar

  • Cancrini G. 2006. Human infections due to nematode helminths nowadays: epidemiology and diagnostic tools. Parassitologia, 48, 53-56Google Scholar

  • Cash H.L., Whitham C.V., Behrendt C.L., Hooper L.V. 2006. Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science, 313, 1126-1130. DOI: 10.1126/science. 1127119CrossrefGoogle Scholar

  • Chai L.Y.A., Netea M.G., Vonk A.G., Kullberg B-J. 2009. Fungal strategies for overcoming host innate immune response. Medical Mycology, 47, 227-236. DOI: 10.1080/136937808022 09082CrossrefGoogle Scholar

  • Chang N.C.A., Hung S.I., Hwa K.Y., Kato I., Chen J.E., Liu C.H., Chang A.C. 2001. A macrophage protein, Ym1, transiently expressed during inflammation is a novel mammalian lectin. Journal of Biological Chemistry, 276, 17497-17506. DOI: 10.1074/jbc.M010417200CrossrefGoogle Scholar

  • Chen F., Liu Z., Wu W., Rozo C., Bowdridge S., Millman A., van Rooijen N., Urban J.F., Wynn T.A., Gause W.C. 2012. An essential role for TH2-type responses in limiting acute tissue damage during experimental helminth infection. Nature Medicine, 18, 260-266. DOI: 10.1038/nm.2628CrossrefGoogle Scholar

  • Da Silva C.A., Chalouni C., Williams A., Hartl D., Lee C.G., Elias J.A. 2009. Chitin is a size-dependent regulator of macrophage TNF and IL-10 production. Journal of Immunology, 182, 3573-3582. DOI: 10.4049/jimmunol.0802113CrossrefGoogle Scholar

  • Da Silva C.A., Hartl D., Liu W., Lee C.G., Elias J.A. 2008. TLR-2 and IL-17A in chitin-induced macrophage activation and acute inflammation. The Journal of Immunology, 181, 4279-4286. DOI: 10.4049/jimmunol.181.6.4279CrossrefGoogle Scholar

  • Denkers E.Y., Wassom D.L., Hayes C.E. 1990. Characterization of Trichinella spiralis antigens sharing an immunodominant, carbohydrate-associated determinant distinct from phosphorylcholine. Molecular and Biochemical Parasitology, 41, 241-249. DOI: org/10.1016/0166-6851(90) 90187-Q CrossrefGoogle Scholar

  • Doligalska M., Rzepecka J., Drela N., Donskow K., Gerwel-Wronka M. 2006. The role of TGF-β in mice infected with Heligmosomoides polygyrus. Parasite Immunology, 28, 387-395. DOI: 10.1111/j.1365-3024.2006.00845.x Everts B., Smits H.H., Hokke C.H., Yazdanbakhsh M. 2010.CrossrefGoogle Scholar

  • Helminths and dendritic cells: sensing and regulating via pattern recognition receptors, Th2 and Treg responses. European Journal of Immunology, 40, 1525-1537. DOI: 10.1002/eji. 200940109CrossrefGoogle Scholar

  • Gebreselassie N.G., Moorhead A.R., Fabre V., Gagliardo L.F., Lee N.A., Lee J.J., Appleton J.A. 2012. Eosinophils preserve parasitic nematode larvae by regulating local immunity. Journal of Immunology, 188, 417-425. DOI: 10.4049/jimmunol. 1101980CrossrefGoogle Scholar

  • Geng J., Plenefisch J., Komuniecki P.R., Komuniecki R. 2002. Secretion of a novel developmentally regulated chitinase (family 19 glycosyl hydrolase) into the perivitelline fluid of the parasitic nematode, Ascaris suum. Molecular and Biochemi cal Parasitology, 124, 11-21. DOI: org/10.1016/S0166-6851(02)00155-X CrossrefGoogle Scholar

  • Grigorian A., Araujo L., Naidu N.N., Place D.J., Choudhury B., Demetriou M. 2011. N-acetylglucosamine inhibits T-helper 1(Th1)/T-helper 17 (Th17) cell responses and treats experimental autoimmune encephalomyelitis. The Journal of Biological Chemistry, 286, 40133-40141. DOI: 10.1074/jbc. M111.277814Google Scholar

  • Hamann K.H., Barker R.L., Loegering D.A., Gleich G.J. 1987. Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis. Journal of Parasitology, 73, 523-529. DOI: 10.2307/3282130CrossrefGoogle Scholar

  • Harbord M., Novelli M., Canas B., Power D., Davis C., Godovac- Zimmermann J., Roes J., Segal A.W. 2002. Ym1 Is a Neutrophil Granule Protein That Crystallizes in p47phox-deficient Mice. Journal of Biological Chemistry, 277, 5468-5475. DOI: 10.1074/jbc.M110635200CrossrefGoogle Scholar

  • Heath-Heckman E.A.C., McFall-Ngai M.J. 2011. The occurrence of chitin in the hemocytes of invertebrates. Zoology, 114, 191-198. DOI:10.1016/j.zool.2011.02.002CrossrefGoogle Scholar

  • Holcomb I.N., Kabakoff R.C., Chan B., Baker T.W., Gurney A., Henzel W., Nelson C., Lowman H.B., Wright B.D., Skelton N.J., Frantz G.D., Tumas D.B., Peale F.V., Jr, Shelton D.L., Hebert C.C. 2000. FIZZ1, a novel cysteine-rich secreted protein associated with pulmonary inflammation, defines a new gene family. The EMBO Journal, 19, 4046-4055. DOI: 10.1093/ emboj/19.15.4046CrossrefGoogle Scholar

  • Huber S., Hoffmann R., Muskens F., Voehringer D. 2010. Alternatively activated macrophages inhibit T-cell proliferation by Stat6-dependent expression of PD-L2. Blood, 116, 3311-3320. DOI: 10.1182/blood-2010-02-271981CrossrefGoogle Scholar

  • Jarmila V., Vavrikova E. 2011. Chitosan derivatives with antimicrobial, antitumour and antioxidant activities-a review. Current Pharmaceutical Design, 17, 3596-3607. DOI: 10.2174/1381612 11798194468CrossrefGoogle Scholar

  • Kaushal N.A., Simpson A.J., Hussain R., Ottesen E.A. 1984. Brugia malayi: stage-specific expression of carbohydrates containing N-acetyl-D-glucosamine on the sheathed surfaces of microfilariae. Experimental Parasitology, 58, 182-187. DOI: 10.1016/0014-4894(84)90033-X CrossrefGoogle Scholar

  • Koller B., Muller-Wiefel A.S., Rupec R., Korting H.C., Ruzicka T. 2011. Chitin modulates innate immune responses of keratinocytes. PloS One, 6, e16594. DOI: 10.1371/journal. pone.0016594CrossrefGoogle Scholar

  • Konopka J.B. 2012. N-acetylglucosamine functions in cell signaling. Scientifica, Article ID 489208. DOI: org/10.6064/2012/ 489208CrossrefGoogle Scholar

  • Kreindler J.L., Steele C., Nguyen N., Chan Y.R., Pilewski J.M., Alcorn J.F., Vyas Y.M., Aujla S.J., Finelli P., Blanchard M., Zeigler S.F., Logar A., Hartigan E., Kurs-Lasky M., Rockette H., Ray A., Kolls J.K. 2010. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. The Journal of Clinical Investigation, 120, 3242-3254. DOI: 10.1172/JCI42388CrossrefGoogle Scholar

  • Kuroda E., Yoshida Y., En Shan B., Yamashita U. 2001. Suppression of macrophage interleukin-12 and tumour necrosis factoralpha production in mice infected with Toxocara canis. Parasite Immunology, 23, 305-311. DOI: 10.1046/j.1365-3024. 2001.00387Google Scholar

  • Lee C.G., Da Silva C.A., Dela Cruz C.S., Ahangari F., Ma B., Kang M-J., He C-H., Takyar S., Elias J.A. 2011. Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annual Review of Physiology, 73, 479-501. DOI: 10.1146/annurev-physiol-012110-142250 CrossrefGoogle Scholar

  • Lee C.G., Da Silva C.A., Lee J.Y., Hartl D., Elias J.A. 2008. Chitin regulation of immune responses: an old molecule with new roles. Current Opinion in Immunology, 20, 684-689. DOI: 10.1016/j.coi.2008.10.002CrossrefGoogle Scholar

  • Liu Q., Arseculeratne C., Liu Z., Whitmire J., Grusby M.J., Finkelman F.D., Darling T.N., Cheever A.W., Swearengen J., Urban J.F., Gause W.C. 2004. Simultaneous deficiency in CD28 and STAT6 results in chronic ectoparasite-induced inflammatory skin disease. Infection and Immunity, 72, 3706-3715. DOI: 10.1128/IAI.72.7.3706-3715.2004CrossrefGoogle Scholar

  • Lucas A.H., Rittenhouse-Olson K., Kronenberg M., Apicella M.A., Wang D., Schreiber J.R., Taylor C.E. 2010. Carbohydrate moieties as vaccine candidates: Meeting summary. Vaccine, 28, 1121-1131. DOI: 10.1016/j.vaccine.2008.05.055CrossrefGoogle Scholar

  • Lysek H., Malinsky J., Janisch R. 1985. Ultrastructure of eggs of Ascaris lumbricoides Linnaeus, 1758. I. Egg-Shells. Folia Parasitologica, 32, 381-384 Google Scholar

  • Malinovsky F.G., Fangel J.U., Willats W.G. 2014. The role of the cell wall in plant immunity. Frontiers in Plant Science, 5, 178. DOI: 10.3389/fpls.2014.00178CrossrefGoogle Scholar

  • Marcello M.R., Singaravelu G., Singson A. 2013. Fertilization. In: (Eds. Schedl T.) Germ Cell Development in C. elegans. Advances in Experimental Medicine and Biology, 757. Springer Science+Business Media New York, 321-350. DOI: 10.1007/ 978-1-4614-4015-4_11CrossrefGoogle Scholar

  • Masure D., Vlaminck J., Wang T., Chiers K., Van den Broeck W., Vercruysse J., Geldhof P. 2013. A role for eosinophils in the intestinal immunity against infective Ascaris suum larvae. PLOS, Neglected Tropical Diseases, 7, e2138. DOI: 10. 1371/journal.pntd.0002138CrossrefGoogle Scholar

  • Matsuwaki Y., Wada K., Moriyama H., Kita H. 2011. Human eosinophil innate response to Alternaria Fungus through protease- activated receptor-2. International Archives of Allergy and Immunology, 155, 123-128. DOI: 10.1159/000327498CrossrefGoogle Scholar

  • McSorley H.J., Maizels R.M. 2012. Helminth infections and host immune regulation. Clinical Microbiology Reviews, 25, 585-608. DOI: 10.1128/CMR.05040-11CrossrefGoogle Scholar

  • Merzendorfer H., Zimoch L. 2003. Chitin metabolism in insects: structure, function and regulation of chitin synthases and chitinases. The Journal of Experimental Biology, 206, 4393-4412. DOI: 10.1242/jeb.00709CrossrefGoogle Scholar

  • Mitreva M., Jasmer D.P., Zarlenga D.S., Wang Z., Abubucker S., Martin J., Taylor C.M., Yin Y., Fulton L., Minx P., Yang S.P., Warren W.C., Fulton R.S., Bhonagiri V., Zhang X., Hallsworth-Pepin K., Clifton S.W., McCarter J.P. Wilson R.K. 2011.The draft genome of the parasitic nematode Trichinella spiralis. Nature Genetics, 43, 228-235. DOI: 10.1038/ng.769CrossrefGoogle Scholar

  • Montovani A., Sica A., Locati M. 2007. New vistas on macrophage differentiation and activation. European Journal of Immunology, 37, 14-16. DOI: 10.1002/eji.200636910CrossrefGoogle Scholar

  • Mora-Montes H.M., Netea M.G., Ferwerda G., Lenardon M.D., Brown G.D., Mistry A.R., Kullberg B.J., O’Callaghan C.A., Sheth C.C., Odds F.C, Brown A.J.P., Munro C.A., Gow, N.A. 2011. Recognition and blocking of innate immunity cells by Candida albicans chitin. Infection and Immunity, 79, 1961-1970. DOI: 10.1128/IAI.01282-10CrossrefGoogle Scholar

  • Nair M.G., Gallagher I.J., Taylor M.D., Loke P.N., Coulson P.S., Wilson R.A., Maizels R.M., Allen J.E. 2005. Chitinase and Fizz family members are a generalized feature of nematode infection with selective upregulation of Ym1 and Fizz1 by antigen- presenting cells. Infection and Immunity, 73, 385-394. DOI: 10.1128/IAI.73.1.385-394.2005CrossrefGoogle Scholar

  • Neuhaus B., Bresciani J., Christensen C.M., Sommer C. 1997. Morphological variation of the corona radiata in Oesophagostomum dentatum, O-quadrispinulatum, and O-radiatum (Nema toda: Strongyloidea). Journal of the Helminthological Society of Washington, 64, 128-136Google Scholar

  • Ngo D.-N. 2012. Antioxidant, antimicrobial properties of chitin, chitosan and their derivatives. In: (Eds. Kim S.-K.) Chitin and Chitosan derivatives. Advanced in Drug Discovery and Developments. CRC Press Taylor and Francis Group, 201-212. DOI: 10.1201/b15636-14CrossrefGoogle Scholar

  • O’Dea E.M., Amarsaikhan N., Li H., Downey J., Steele E., Van Dyken S.J., Locksley R.M., Templeton S.P. 2014. Eosinophils are Recruited in Response to Chitin Exposure and Enhance Th2-Mediated Immune Pathology in Aspergillus fumigatus infection. Infection and Immunity, 82, 3199-3205. DOI: 10.1128/IAI.01990-14CrossrefGoogle Scholar

  • Overdijk B., Van Steijn G.J., Odds F.C. 1996. Chitinase levels in guinea pig blood are increased after systemic infection with Aspergillus fumigatus. Glycobiology, 6, 627-634. DOI: 10.1093/glycob/6.6.627CrossrefPubMedGoogle Scholar

  • Paliwal R., Paliwal S.R., Agrawal G.P., Vyas S.P. 2012. Chitosan nanoconstructs forimproved oral delivery of low molecular weight heparin: in vitro and in vivo evaluation. International Journal of Pharmacy, 422, 179-184. DOI: 10.1016/j.ijpharm. 2011.10.048CrossrefGoogle Scholar

  • Pilarczyk B., Doligalska M.J., Donskow-Schmelter K., Balicka-Ramisz A., Ramisz A. 2008. Selenium supplementation enhances the protective response to Toxocara canis larvae in mice. Parasite Immunology, 30, 394-402. DOI: 10.1111/ j.1365-3024.2008.01039.x CrossrefGoogle Scholar

  • Pillai C.K.S., Paul W., Sharma C.P. 2009. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science, 34, 641-678. DOI: org/10.1016/j.progpolymsci. 2009.04.001CrossrefGoogle Scholar

  • Pinelli E., Aranzamendi C. 2012. Toxocara infection and its association with allergic manifestations. Endocrine Metabolic & Immune Disorders Drug Targets, 12, 33-44. DOI: 10.2174/ 187153012799278956CrossrefGoogle Scholar

  • Poltorak A., He X., Smirnova I., Liu M.Y., Van Huffel C., Du X., Birdwell D., Alejos E., Silva M., Galanos C., Freudenberg M., Ricciardi-Castagnoli P., Layton B., Beutler B. 1998. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282, 2085-2088. DOI: 10. 1126/science.282.5396.2085Google Scholar

  • Porporatto C., Bianco I.D., Cabanillas A.M., Correa S.G. 2004. Early events associated to the oral co-administration of type II collagen and chitosan: induction of anti-inflammatory cytokines. International Immunology, 16, 433-441. DOI: 10.1093/intimm/ dxh051CrossrefPubMedGoogle Scholar

  • Porporatto C., Bianco I.D., Correa S.G. 2005. Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. Journal of Leukocyte Biology, 78, 62-69. DOI: 10.1189/jlb.0904541CrossrefGoogle Scholar

  • Porporatto C., Canali M.M., Bianco I.D., Correa S.G. 2009a. Ability of the polysaccharide chitosan to inhibit proliferation of CD4+ lymphocytes from mucosal inductive sites, in vitro and in vivo. Cell Proliferation, 42, 780-787. DOI: 10.1111/j.1365-2184.2009.00634.x CrossrefGoogle Scholar

  • Porporatto C., Canali M.M., Bianco I.D., Correa S.G. 2009b. The biocompatible polysaccharide chitosan enhances the oral tolerance to type II collagen. Clinical and Experimental Immunology, 155, 79-87. DOI: 10.1111/j.1365-2249.2008.03777.x CrossrefGoogle Scholar

  • Reese T.A., Liang H.E., Tager A.M., Luster A.D., Van Rooijen N., Voehringer D., Locksley R.M. 2007. Chitin induces accumulation in tissue of innate immune cells associated with allergy. Nature, 447, 92-96. DOI: 10.1038/nature05746CrossrefGoogle Scholar

  • Richardson M.D. 2005. Changing patterns and trends in systemic fungal infections. Journal of Antimicrobial Chemotherapy, 56, i5-i11. DOI: 10.1093/jac/dki218Google Scholar

  • Romani L. 2004. Immunity to fungal infections. Nature Reviews Immunology, 4, 11-24. DOI: 10.1038/nri1255CrossrefGoogle Scholar

  • Roy R.M., Wuthrich M., Klein B.S. 2012. Chitin elicits CCL2 from airway epithelial cells and induces CCR2-dependent innate allergic inflammation in the lung. The Journal of Immunology, 189, 2545-2552. DOI: 10.4049/jimmunol.1200689CrossrefGoogle Scholar

  • Satoh T., Takeuchi O., Vandenbon A., Yasuda K., Tanaka Y., Kumagai Y., Miyake T., Matsushita K., Okazaki T., Saitoh T., Honma K., Matsuyama T., Yui K., Tsujimura T., Standley D.M., Nakanishi K., Nakai K, Akira, S. 2010. The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nature Immunology, 11, 936-944. DOI: 10.3410/j.6283956.6364054CrossrefGoogle Scholar

  • Schlosser A., Thomsen T., Moeller J.B., Nielsen O., Tornoe I., Mollenhauer J., Moestrup S.K, Holmskov U. 2009. Characterization of FIBCD1 as an acetyl group-binding receptor that binds chitin. The Journal of Immunology, 183, 3800-3809. DOI: 10.4049/jimmunol.0901526CrossrefGoogle Scholar

  • Shamri R., Xenakis J.J., Spencer L.A. 2011. Eosinophils in innate immunity: an evolving story. Cell and Tissue Research, 343, 57-83. DOI: 10.1007/s00441-010-1049-6CrossrefGoogle Scholar

  • Shibata Y., Honda I., Justice J.P., Van Scott MR., Nakamura R.M., Myrvik Q.N. 2001. Th1 adjuvant N-acetyl-D-glucosamine polymer up-regulates Th1 immunity but down-regulates Th2 immunity against a mycobacterial protein (MPB-59) in interleukin-10-knockout and wild-type mice. Infection and Immunity, 69, 6123-6130. DOI: 10.1128/IAI.69.10.6123-6130.2001CrossrefGoogle Scholar

  • Shibata Y., Metzger W.J., Myrvik Q.N. 1997. Chitin particle-induced cell-mediated immunity is inhibited by soluble mannan: mannose receptor-mediated phagocytosis initiates IL-12 production. The Journal of Immunology, 159, 2462-2467Google Scholar

  • Suginta W., Robertson P.A., Austin B., Fry S.C., Fothergill-Gillmore L.A. 2000. Chitinases from vibrio: Activity screening and purification of chiA from Vibrio carchariae. Journal of Applied Microbiology, 89, 76-84. DOI: 10.1046/j.1365-2672. 2000.01076.x CrossrefGoogle Scholar

  • Sukhithasri V., Nisha N., Biswas L., Kumar, V.A., Biswas R. 2013. Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiological Research, 168, 396-406. DOI: 10.16/j.micres.2013.02.005Google Scholar

  • Sullivan B.A., Nagarajan N.A., Wingender G., Wang J., Scott I., Tsuji M., Franck R.W., Porcelli S.A., Zajonc D.M., Kronenberg M. 2010. Mechanisms for glycolipid antigen-driven cytokine polarization by Va14i NKT cells. The Journal of Immunology, 184, 141-153. DOI: 10.4049/jimmunol.0902880Google Scholar

  • Tachu B., Pillai S., Lucius R., Pogonka T. 2008. Essential Role of Chitinase in the Development of the Filarial Nematode Acanthocheilonema viteae. Infection and Immunity, 76, 221-228. DOI: 10.1128/IAI.00701-07CrossrefGoogle Scholar

  • Tharanathan R.N., Kittur F.S. 2003. Chitin: the undisputed biomolecule of great potential. Critical Reviews in Food Science and Nutrition, 43, 61-87. DOI: 10.1080/10408690390826455CrossrefGoogle Scholar

  • Van Dyken S.J., Mohapatra A., Nussbaum J.C., Molofsky A.B., Thornton E.E., Ziegler S.F., McKenzie A.N.J., Krummel M.F., Liang H-E., Locksley R.M. 2014. Chitin activates parallel immune modules that direct distinct inflammatory responses via innate lymphoid Type 2 and gd T cells. Immunity, 40, 414-424. DOI: 10.1016/j.immuni.2014.02.003 CrossrefGoogle Scholar

  • Vega K., Kalkum M. 2012. Chitin, Chitinase responses and invasive fungal infections. International Journal of Microbiology, Article ID 920459. DOI: org/10.1155/2012/920459CrossrefGoogle Scholar

  • Venturiello S.M., Verzoletti M.L., Costantino S.N., Forastiero M.A., Roux M.E. 2007. Early pulmonary response in rats infected with Trichinella spiralis. Parasitology, 134, 281-288. DOI: http://dx.doi.org/10.1017/S0031182006001454 CrossrefGoogle Scholar

  • Veronico P., Gray L.J., Jones J.T., Bazzicalupo P., Arbucci S., Cortese M.R., Di Vito M., De Giorgi C. 2001.Nematode chitin synthases: gene structure, expression and function in Caenorhabditis elegans and the plant parasitic nematode Meloidogyne artiellia. Molecular Genetics and Genomics, 266, 28-34. DOI: 10.1007/s004380100513CrossrefGoogle Scholar

  • Wagener J., Malireddi R.S., Lenardon M.D., Koberle M., Vautier S., MacCallum D.M., Biedermann T., Schaller M., Netea M. G., Kanneganti T.D., Brown G.D., Brown A.J.P., Gow N.A. 2014. Fungal Chitin Dampens Inflammation through IL-10 Induction Mediated by NOD2 and TLR9 Activation. PLoS Pathogens, 10, e1004050. DOI: 10.1371/journal.ppat.1004050CrossrefGoogle Scholar

  • Wagner C.J., Huber S., Wirth S., Voehringer D. 2010. Chitin induces upregulation of B7-H1 on macrophages and inhibits T-cell proliferation. European Journal of Immunology, 40, 2882-2890. DOI: 10.1002/eji.201040422CrossrefGoogle Scholar

  • Walton S.F., Pizzutto S., Slender A., Viberg L., Holt D., Hales B.J., Kemp D.J., Currie B.J., Rolland J.M., O’Hehir R. 2010. Increased allergic immune response to Sarcoptes scabiei anti- gens in crusted versus ordinary scabies. Clinical and Vaccine Immunology, 17, 1428-1438. DOI: 10.1128/CVI.00195-10CrossrefGoogle Scholar

  • Wharton D.A. 1980. Nematode egg-shells. Parasitology, 81, 447-463. DOI: org/10.1017/S003118200005616X Yasuda K., Matsumoto M., Nakanishi K. 2014. Importance of both innate immunity and acquired immunity for rapid expulsion of S. venezuelensis. Frontiers in Immunology, 5, 118. DOI: 10.3389/fimmu.2014.00118CrossrefGoogle Scholar

  • Yoon J., Ponikau J.U., Lawrence C.B., Kita H. 2008. Innate antifungal immunity of human eosinophils mediated by a integrin, CD11b. The Journal of Immunology, 181, 2907-2915. DOI: 10.4049/jimmunol.181.4.2907CrossrefGoogle Scholar

  • Zhang Y., Foster J.M., Nelson L.S., Ma D., Carlow C.K. 2005. The chitin synthase genes chs-1 and chs-2 are essential for C. elegans development and responsible for chitin deposition in the eggshell and pharynx, respectively. Developmental Biology, 285, 330-339. DOI: org/10.1016/j.ydbio.2005.06.037 CrossrefGoogle Scholar

About the article

Received: 2014-05-27

Revised: 2014-11-26

Accepted: 2014-12-01

Published Online: 2015-03-25

Published in Print: 2015-06-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0047.

Export Citation

© 2015 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Daniel Elieh Ali Komi, Lokesh Sharma, and Charles S. Dela Cruz
Clinical Reviews in Allergy & Immunology, 2017
[2]
Cibele Konstantinovas, Tiago A. de Oliveira Mendes, Marcos A. Vannier-Santos, and Jane Lima-Santos
Frontiers in Microbiology, 2017, Volume 8

Comments (0)

Please log in or register to comment.
Log in