Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

See all formats and pricing
More options …
Volume 60, Issue 2


The lack of effectiveness of hyperbaric oxygenation as a treatment for Leishmania major in a mouse model

Ayelet Livneh
  • Pediatric Division, Assaf Harofeh Medical Center, Zerifin 70300, Israel, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ilan Youngster
  • Pediatric Division, Assaf Harofeh Medical Center, Zerifin 70300, Israel, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Yossef El-On
  • Parasitology Laboratory, Soroka University Medical Center, Ben-Gurion University of the Negev, P.O.B. 653, Beer-Sheva 8410501, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Matitiahu Berkovitch
  • Pediatric Division, Assaf Harofeh Medical Center, Zerifin 70300, Israel, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ibrahim Abu-Kishk
  • Corresponding author
  • Pediatric Division, Assaf Harofeh Medical Center, Zerifin 70300, Israel, Affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-03-25 | DOI: https://doi.org/10.1515/ap-2015-0048


We aimed to study the effectiveness of hyperbaric oxygen therapy (HOT) (100% oxygen at 2 ATA for 70 minutes each session for 20 consecutive days) on BALB/c male mice infected with Leishmania major. Fifty-one mice were assigned to six groups. Group 1 was treated with HOT from 1 day after the inoculation. In Groups 2-5, treatment began when the cutaneous lesions appeared. Group 2 received HOT only, Group 3 received topical therapy with Leshcutan only, Groups 4 and 5 received a combination of HOT and Leshcutan for 5 and 10 days respectively, and Group 6 did not receive any treatment (control group). When comparing the control group with Group 1, treatment with HOT in Group 1 did not significantly affect the time of the appearance of the lesions. In contrast, mice treated with Leshcutan demonstrated a significant difference in lesion size and spleen dimensions as compared to the rest of the mice (p<0.001). The results show that HOT treatment has no positive effect on the course of Leishmaniasis in a BALB/c mice model infected with Leishmania major. Further studies are needed with a mouse model closer to humans and with different HOT protocols.

Keywords: Leishmania major; hyperbaric oxygen therapy; mouse model; methylbenzethonium chloride; paromomycin sulphate


  • Arana B.A., Mendoza C.E., Rizzo N.R., Kroeger A. 2001. Randomized, controlled, double-blind trial of topical treatment of cutaneous leishmaniasis with paromomycin plus methylbenzethonium chloride ointment in Guatemala. American Journal of Tropical Medicine and Hygiene, 65, 466-470Google Scholar

  • Arrias-Silva W.W., Collhone M.C., Ayres D.C., de Souza Souto P.C., Giorgio S. 2005. Effects of hyperbaric oxygen on Leishmania amazonensis promastigotes and amastigotes. Parasitology International, 54, 1-7CrossrefGoogle Scholar

  • Arrias-Silva W.W., Pinto E.F., Rossi-Bergmann B., Giorgio S. 2006. Hyperbaric oxygen therapy reduces the size of Leishmania amazonensis-induced soft tissue lesions in mice. Acta Tropica 98, 130-136Google Scholar

  • Benson R.M., Minter L.M., Osborne B.A., Granowitz E.V. 2003. Hyperbaric oxygen inhibits stimulus-induced proinflammatory cytokine synthesis by human blood-derived monocytemacrophages. Clinical and Experimental Immunology, 13, 57-62CrossrefGoogle Scholar

  • Bogdan C., Moll H., Solbach W., Röllinghoff M. 1990. Tumor necrosis factor alpha in combination with interferon-gamma, but not with interleukin 4 activates murine macrophages for elimination of Leishmania major amastigotes. European Journal of Immunology, 20, 1131-1135PubMedCrossrefGoogle Scholar

  • Croft S.L., Yardley V. 2002. Chemotherapy of leishmaniasis. Current Pharmaceutical Design, 8, 319-342CrossrefPubMedGoogle Scholar

  • Desjeux P. 2004. Leishmaniasis: current situation and new perspectives. Comparative Immunology, Microbiology and Infectious Diseases, 27, 305-318 Web of ScienceGoogle Scholar

  • El-On J., Livishin R., Hamburger D., Even-Paz Z., Weinrauch L. 1986. Topical treatment of cutaneous leishmaniasis. The Journal of Investigative Dermatology, 87, 284-8Google Scholar

  • El-On J., Halevy S., Grunwald M.H., Weinrauch L. 1992. Topical treatment of Old World cutaneous leishmaniasis caused by Leishmania major: a double-blind control study. Journal of the American Academy of Dermotology, 27, 22-31Google Scholar

  • El-On J., Bazarsky E, Sneir R. 2007. Leishmania major: in vitro and in vivo anti-leishmanial activity of paromomycin ointment (Leshcutan) combined with the immunomodulator Imiquimod. Experimental Parasitology, 116, 156-162Web of ScienceGoogle Scholar

  • Giorgio S., Linares E., Ischiropoulos H., Von Zuben F.J., Yamada A., Augusto O. 1998. In vivo formation of electron paramagnetic resonance-detectable nitric oxide and of nitrotyrosine is not impaired during murine leishmaniasis. Infectious Immunology, 66, 807-814Google Scholar

  • Grimaldi Jr. G., Tesh R.B. 1993. Leishmaniases of the New World: current concepts and implications for future research. Clinical Microbiology Reviews, 6, 230-250.PubMedGoogle Scholar

  • Herwaldt B.L. 1999. Leishmaniasis. Lancet, 354, 1191-1199Google Scholar

  • Knighton D.R., Silver I.A., Hunt T.K. 1981. Regulation of woundhealing angiogenesis - effect of oxygen gradients and inspired oxygen concentration. Surgery, 90, 262-270Google Scholar

  • Kranke P, Bennett M.H., Martyn-St James M., Schnabel A., Debus S.E. 2012. Hyperbaric oxygen therapy for chronic wounds. The Chocrane Datebase of Systematic Reviews, 4, CD004123Google Scholar

  • Labrouche S., Javorschi S., Leroy D., Gbikpi-Benissan G., Freyburger G. 1999. Influence of hyperbaric oxygen on leukocyte functions and haemostasis in normal volunteer divers. Thrombosis Research, 96, 309-315PubMedCrossrefGoogle Scholar

  • Lee S.A., Hasbun R. 2003. Therapy of cutaneous leishmaniasis. International Journal of Infectious Diseases, 7, 86-93CrossrefGoogle Scholar

  • Liew F.Y. 1989. Functional heterogeneity of CD4+ T cells in leishmaniasis. Immunology Today, 10, 40-45 Muhvich K.H., Anderson L.H., Criswell D.W., Mehm W.J. 1993. Hyperbaric hypoeroxia enhances the lethal effects of amphotericin B in Leishmania braziliensis panamensis. Undersea Hyperbaric Medicine,20, 321-328Google Scholar

  • Navin T.R., Arana B.A., Arana F.E., Berman J.D., Chajon J.F. 1992. Placebo-controlled clinical trial of sodium stibogluconate (Pentostam) versus ketoconazole for treating cutaneous leishmaniasis in Guatemala. The Journal of Infectious Diseases 165, 528-34Google Scholar

  • Neal R.A., Allen S., McCoy N., Olliaro P., Croft S.L. 1995. The sensitivity of Leishmania species to aminosidine. The Journal of Antimicrobial Chemotherapy, 35, 577-584CrossrefPubMedGoogle Scholar

  • Singer S.R., Abramson N., Shoob H., Zaken O., Zentner G., Stein- Zamir C. 2008. Ecoepidemiology of cutaneous leishmaniasis outbreak, Israel. Emerging Infectious Diseases, 14, 1424-1426Web of SciencePubMedCrossrefGoogle Scholar

  • Sitkovsky M.V., Lukashev D., Apasov S., Kojima H., Koshiba M., Caldwell C, Ohta A., ThielM. 2004. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annuual Review of Imunology, 22, 657-682CrossrefGoogle Scholar

  • Smith R.M., Mohideen P. 1991. One hour 1 ATA oxygen enhances rat alveolar macrophage chemiluminescence and fungal cytotoxicity. American Journal of Physiology, 260, L457-L463Google Scholar

  • Tandara A.A., Mustoe T.A. 2004. Oxygen in wound healing - more than a nutrient. World Journal of Surgery, 28, 294-300CrossrefPubMedGoogle Scholar

  • Thom S.R. 2011. Hyperbaric oxygen: its mechanisms and efficacy. Plastic Reconstructive Surgery, 127 Suppl 1, 131S-141S Web of ScienceGoogle Scholar

About the article

Received: 2014-05-25

Revised: 2014-11-20

Accepted: 2014-12-01

Published Online: 2015-03-25

Published in Print: 2015-06-01

Citation Information: Acta Parasitologica, Volume 60, Issue 2, Pages 345–349, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0048.

Export Citation

© 2015 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Hossein Reisi Nafchi, Elham Kazemi-Rad, Mehdi Mohebali, Reza Raoofian, Niloofar Bavarsad Ahmadpour, Mohammad Ali Oshaghi, and Homa Hajjaran
Acta Parasitologica, 2016, Volume 61, Number 1

Comments (0)

Please log in or register to comment.
Log in