Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 60, Issue 3


Trypanosoma cruzi DTU TcII presents higher blood parasitism than DTU TcI in an experimental model of mixed infection

Helioswilton Sales-Campos
  • Pós Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henrique Borges Kappel
  • Pós Graduação em Medicina Tropical e Infectologia, Universidade Federal do Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cristiane Pontes Andrade
  • Pós Graduação em Medicina Tropical e Infectologia, Universidade Federal do Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Tiago Pereira Lima
  • Pós Graduação em Medicina Tropical e Infectologia, Universidade Federal do Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Alessandra de Castilho
  • Pós Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luis Eduardo Ramirez Giraldo
  • Pós Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
  • Pós Graduação em Medicina Tropical e Infectologia, Universidade Federal do Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eliane Lages-Silva
  • Pós Graduação em Ciências Fisiológicas, Universidade Federal do Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
  • Pós Graduação em Medicina Tropical e Infectologia, Universidade Federal do Triângulo Mineiro. Uberaba, Minas Gerais, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-16 | DOI: https://doi.org/10.1515/ap-2015-0060


Trypanosoma cruzi (Tc), the causative agent of Chagas disease, affects millions of people worldwide. One of the major characteristics of T. cruzi is related to its heterogeneity due to the variability of its biological properties, parasite growth rates, infectivity, tissue tropism, morbidity and virulence among different isolates observed during experimental or human infection. Moreover, presence of mixed infections in the same host in endemic areas is a matter of study due to its impact on clinical manifestations and disease progression. In this study, we evaluated the biological behavior of two Tc I strains AQ1-7 (AQ) and MUTUM (MT) and one Tc II strain (JG) during the acute phase of infection, in unique and mixed infections. A patent blood parasitism was detected only in mice inoculated with JG strain . In addition blood parasitism parameters (peak and average blood parasitism) were positively associated when JG and AQ strains were combined. In contrast, a negative association was observed in the JG+MUTUM group. The predominance of TcII strain over TcI strains was highlighted using the LSSP-PCR technique, which was performed in samples from hemoculture. Thus, this study showed important biological differences between different T. cruzi strains and discrete typing units (DTUs) in acute phase. Finally, we observed that blood parasitism during early period of infection seems to be more related to DTU than to a specific strain.

Keywords : Trypanosoma cruzi; experimental mixed infection; biological behavior; blood parasitism; LSSP-PCR


  • Andrade L.O., Machado C.R., Chiari E., Pena S.D., Macedo A.M. 2002. Trypanosoma cruzi: role of host genetic background in the differential tissue distribution of parasite clonal populations. Experimental Parasitology, 100, 269-275PubMedCrossrefGoogle Scholar

  • Andrade S.G., Magalhaes J.B. 1996. Biodemes and zymodemes of Trypanosoma cruzi strains: correlations with clinical data and experimental pathology. Revista Sociedade Brasileira de Medicina Tropical, 30, 27-35Google Scholar

  • Anez N., Crisante G., da Silva F.M., Rojas A., Carrasco H., Umezawa E.S., Stolf A.M., Ramirez J.L., Teixeira M.M. 2004. Predominance of lineage I among Trypanosoma cruzi isolates from Venezuelan patients with different clinical profiles of acute Chagas’ disease. Tropical Medicine International Health, 9, 1319-1326. DOI:10.1111/j.1365-3156.2004.01333.x CrossrefGoogle Scholar

  • Bertoli M., Ando M.H., De Ornelas Toledo M.J., De Araujo S.M., Gomes M.L. 2006. Infectivity for mice of Trypanosoma cruzi I and II strains isolated from different hosts. Parasitology Research, 99, 7-13. doi:10.1007/s00436-005-0122-7CrossrefPubMedGoogle Scholar

  • Botero L.A., Mejia A.M., Triana O. 2007. [Biological and genetic characterization of two Colombian clones of Trypanosoma cruzi groups I and II]. Biomedica, 27 Suppl 1:64-74CrossrefPubMedGoogle Scholar

  • Brener Z. 1962. Therapeutic activity and criterion of cure on mice experimentally infected with Trypanosoma cruzi. Revista do Instituto de Medicina Tropical de Sao Paulo, 4,389-396Google Scholar

  • Brener Z., Gazzinelli R.T. 1997. Immunological control of Trypanosoma cruzi infection and pathogenesis of Chagas’ disease. International Archives of Allergy Immunology, 114, 103-110CrossrefGoogle Scholar

  • Breniere S.F., Bosseno M.F., Noireau F., Yacsik N., Liegeard P., Aznar C., Hontebeyrie M. 2002. Integrate study of a Bolivian population infected by Trypanosoma cruzi, the agent of Chagas disease. Memorias do Instituto Oswaldo Cruz, 97, 289-295CrossrefGoogle Scholar

  • Brisse S., Dujardin J.C., Tibayrenc M. 2000. Identification of six Trypanosoma cruzi lineages by sequence-characterised amplified region markers. Molecular Biochemistry Parasitology, 111, 95-105CrossrefGoogle Scholar

  • Brisse S., Verhoef J., Tibayrenc M. 2001. Characterisation of large and small subunit rRNA and mini-exon genes further supports the distinction of six Trypanosoma cruzi lineages. International Journal of Parasitology, 31, 1218-1226. doi:S0020-7519(01) 00238-7 [pii] CrossrefGoogle Scholar

  • Camara A.C., Varela-Freire A.A., Valadares H.M., Macedo A.M., D’Avila D.A., Machado C.R., Lages-Silva E., Chiari E., Galvao L.M. 2010. Genetic analyses of Trypanosoma cruzi isolates from naturally infected triatomines and humans in northeastern Brazil. Acta Tropica, 115, 205-211. DOI:10.1016/ j.actatropica.2010.03.003 Web of SciencePubMedCrossrefGoogle Scholar

  • Coronado X., Zulantay I., Albrecht H., Rozas M., Apt W., Ortiz S., Rodriguez J., Sanchez G., Solari A. 2006. Variation in Trypanosoma cruzi clonal composition detected in blood patients and xenodiagnosis triatomines: implications in the molecular epidemiology of Chile. American Journal of Tropical Medicine Hygiene, 74, 1008-1012Google Scholar

  • Coura J.R., Borges-Pereira J. 2012. Chagas disease. What is known and what should be improved: a systemic review. Revista da Sociedade Brasileira de Medicina Tropical, 45, 286-296CrossrefPubMedGoogle Scholar

  • Coura J.R., Dias J.C. 2009. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Memorias do Instituto Oswaldo Cruz, 104 Suppl 1:31-40CrossrefGoogle Scholar

  • Cura C.I., Mejia-Jaramillo A.M., Duffy T., Burgos J.M., Rodriguero M., Cardinal M.V., Kjos S., Gurgel-Goncalves R., Blanchet D., De Pablos L.M., Tomasini N., da Silva A., Russomando G., Cuba C.A., Aznar C., Abate T., Levin M.J., Osuna A., Gurtler R.E., Diosque P., Solari A., Triana-Chavez O., Schijman A.G. 2010. Trypanosoma cruzi I genotypes in different geographical regions and transmission cycles based on a microsatellite motif of the intergenic spacer of splicedleader genes. International Journal of Parasitol, 40, 1599-1607. DOI:10.1016/j.ijpara.2010.06.006CrossrefWeb of ScienceGoogle Scholar

  • D’Avila D.A., Macedo A.M., Valadares H.M., Gontijo E.D., de Castro A.M., Machado C.R., Chiari E., Galvao L.M. 2009. Probing population dynamics of Trypanosoma cruzi during progression of the chronic phase in chagasic patients. Journal of Clinical Microbiology, 47, 1718-1725. DOI:10.1128/JCM.01658-08 Web of ScienceCrossrefGoogle Scholar

  • de Lana M., Chiari C.A., Chiari E., Morel C.M., Goncalves A.M., Romanha A.J. 1996. Characterization of two isolates of Trypanosoma cruzi obtained from the patient Berenice, the first human case of Chagas’ disease described by Carlos Chagas in 1909. Parasitology Reseacrh, 82, 257-260Google Scholar

  • Deane M.P., Mangia R.H., Pereira N.M., Momen H., Goncalves A.M., Morel C.M. 1984. Trypanosoma cruzi: strain selection by different schedules of mouse passage of an initially mixed infection. Memorias do Instituto Oswaldo Cruz, 79, 495-497 CrossrefGoogle Scholar

  • del Puerto R., Nishizawa J.E., Kikuchi M., Iihoshi N., Roca Y., Avilas C., Gianella A., Lora J., Velarde F.U., Renjel L.A., Miura S., Higo H., Komiya N., Maemura K., Hirayama K. 2010. Lineage analysis of circulating Trypanosoma cruzi parasites and their association with clinical forms of Chagas disease in Bolivia. PLoS Neglected Tropical Disease, 4, e687. DOI:10.1371/journal.pntd.0000687CrossrefGoogle Scholar

  • Devera R., Fernandes O., Coura J.R. 2003. Should Trypanosoma cruzi be called “cruzi” complex? a review of the parasite diversity and the potential of selecting population after in vitro culturing and mice infection. Memorias do Instituto Oswaldo Cruz, 98, 1-12CrossrefGoogle Scholar

  • Di Noia J.M., Buscaglia C.A., De Marchi C.R., Almeida I.C., Frasch A.C. 2002. A Trypanosoma cruzi small surface molecule provides the first immunological evidence that Chagas’ disease is due to a single parasite lineage. Journal of Experimental Medicine, 195, 401-413Google Scholar

  • Dias J.C., Silveira A.C., Schofield C.J. 2002. The impact of Chagas disease control in Latin America: a review. Memorias do Instituto Oswaldo Cruz, 97, 603-612Google Scholar

  • Diosque P., Barnabe C., Padilla A.M., Marco J.D., Cardozo R.M., Cimino R.O., Nasser J.R., Tibayrenc M., Basombrio M.A. 2003. Multilocus enzyme electrophoresis analysis of Trypanosoma cruzi isolates from a geographically restricted endemic area for Chagas’ disease in Argentina. International Journal of Parasitology, 33, 997-1003Google Scholar

  • Dujardin J.P., Tibayrenc M., Venegas E., Maldonado L., Desjeux P., Ayala F.J. 1987. Isozyme evidence of lack of speciation between wild and domestic Triatoma infestans (Heteroptera: Reduviidae) in Bolivia. Journal of Medical Entomology, 24, 40-45Google Scholar

  • Freitas J.M., Lages-Silva E., Crema E., Pena S.D., Macedo A.M. 2005. Real time PCR strategy for the identification of major lineages of Trypanosoma cruzi directly in chronically infected human tissues. International Journal of Parasitology, 35, 411-417. DOI:S0020-7519(04)00260-7 [pii] 10.1016/j.ijpara. 2004.10.023CrossrefGoogle Scholar

  • Gazzinelli R.T., Oswald I.P., Hieny S., James S.L., Sher A. 1992. The microbicidal activity of interferon-gamma-treated macrophages against Trypanosoma cruzi involves an L-arginine-dependent, nitrogen oxide-mediated mechanism inhibitable by interleukin-10 and transforming growth factor-beta. European Journal of Immunology, 22, 2501-2506. DOI:10.1002/eji.1830221006CrossrefGoogle Scholar

  • Gomes M.L., Macedo A.M., Vago A.R., Pena S.D., Galvao L.M., Chiari E. 1998. Trypanosoma cruzi: optimization of polymerase chain reaction for detection in human blood. Experimental Parasitology, 88, 28-33. DOI:10.1006/expr.1998.4191CrossrefPubMedGoogle Scholar

  • Krettli A.U., Weisz-Carrington P., Nussenzweig R.S. 1979. Membranebound antibodies to bloodstream Trypanosoma cruzi in mice: strain differences in susceptibility to complement-mediated lysis. Clinical Experimental Immunology, 37, 416-423Google Scholar

  • Llewellyn M.S., Miles M.A., Carrasco H.J., Lewis M.D., Yeo M., Vargas J., Torrico F., Diosque P., Valente V., Valente S.A., Gaunt M.W. 2009. Genome-scale multilocus microsatellite typing of Trypanosoma cruzi discrete typing unit I reveals phylogeographic structure and specific genotypes linked to human infection. PLoS Pathog, 5, e1000410. DOI:10.1371/journal.ppat.1000410Web of ScienceCrossrefGoogle Scholar

  • Macedo A.M., Pena S.D. 1998. Genetic Variability of Trypanosoma cruzi:Implications for the Pathogenesis of Chagas Disease. Parasitology Today, 14, 119-124CrossrefGoogle Scholar

  • Miles M.A., Souza A., Povoa M., Shaw J.J., Lainson R., Toye P.J. 1978. Isozymic heterogeneity of Trypanosoma cruzi in the first autochthonous patients with Chagas’ disease in Amazonian Brazil. Nature, 272, 819-821Google Scholar

  • Miles M.A., Toye P.J., Oswald S.C., Godfrey D.G. 1977. The identification by isoenzyme patterns of two distinct straingroups of Trypanosoma cruzi, circulating independently in a rural area of Brazil. Transactions of the Royal Society of Tropical Medicine Hygiene, 71, 217-225Google Scholar

  • Morel C.M., Deane M.P., Goncalves A.M. 1986. The complexity of Trypanosoma cruzi populations revealed by schizodeme analysis. Parasitology Today, 2, 97-101CrossrefGoogle Scholar

  • Oliveira R.P., Broude N.E., Macedo A.M., Cantor C.R., Smith C.L., Pena S.D. 1998. Probing the genetic population structure of Trypanosoma cruzi with polymorphic microsatellites. Procedures of the National Academy of Science U S A, 95, 3776-3780Google Scholar

  • Pena D.A., Eger I., Nogueira L., Heck N., Menin A., Bafica A., Steindel M. 2011. Selection of TcII Trypanosoma cruzi population following macrophage infection. Journal of Infectious Disease, 204, 478-486. doi:10.1093/infdis/jir292CrossrefWeb of ScienceGoogle Scholar

  • Prata A. 2001. Clinical and epidemiological aspects of Chagas disease. The Lancet Infectious Disease, 1, 92-100. DOI:10.1016/S1473-3099(01)00065-2CrossrefGoogle Scholar

  • Rodriguez I.B., Botero A., Mejia-Jaramillo A.M., Marquez E.J., Ortiz S., Solari A., Triana-Chavez O. 2009. Transmission dynamics of Trypanosoma cruzi determined by low-stringency single primer polymerase chain reaction and southern blot analyses in four indigenous communities of the Sierra Nevada de Santa Marta, Colombia. American Journal of Tropical Medicine and Hygiene, 81, 396-403Google Scholar

  • Sales-Campos H., Kappel H.B., Andrade C.P., Lima T.P., Mattos M.E., Jr., de Castilho A., Correia D., Giraldo L.E., Lages- Silva E. 2014. A DTU-dependent blood parasitism and a DTU-independent tissue parasitism during mixed infection of Trypanosoma cruzi in immunosuppressed mice. Parasitology Research, 113, 375-385. DOI:10.1007/s00436-013-3665-z CrossrefWeb of ScienceGoogle Scholar

  • Tarleton R.L. 2007. Immune system recognition of Trypanosoma cruzi. Current Opinion in Immunology, 19, 430-434. DOI: 10.1016/j.coi.2007.06.003PubMedCrossrefGoogle Scholar

  • Tibayrenc M. 1998. Beyond strain typing and molecular epidemiology: integrated genetic epidemiology of infectious diseases. Parasitology Today, 14, 323-329CrossrefGoogle Scholar

  • Tibayrenc M., Ward P., Moya A., Ayala F.J. 1986. Natural populations of Trypanosoma cruzi, the agent of Chagas disease, have a complex multiclonal structure. Procedures of the National Academy of Science U S A, 83, 115-119Google Scholar

  • Torrico M.C., Solano M., Guzman J.M., Parrado R., Suarez E., Alonzo-Vega C., Truyens C., Carlier Y., Torrico F. 2005. [Estimation of the parasitemia in Trypanosoma cruzi human infection: high parasitemias are associated with severe and fatal congenital Chagas disease]. Revista da Sociedade Brasileira de Medicina Tropical, 38 Suppl 2, 58-61PubMedGoogle Scholar

  • Tzelepis F., de Alencar B.C., Penido M.L., Claser C., Machado A.V., Bruna-Romero O., Gazzinelli R.T., Rodrigues M.M. 2008. Infection with Trypanosoma cruzi restricts the repertoire of parasite-specific CD8+ T cells leading to immunodominance. Journal of Immunology, 180, 1737-1748Web of ScienceGoogle Scholar

  • Wallace A., Sanchez G., Venegas J., Solari A. 1995. Lack of crossreactivity of lytic antibodies with bloodstream forms of Trypanosoma cruzi zymodemes generated in a mouse experimental model. Experimental Parasitology, 80, 176-185. DOI:10.1006/expr.1995.1022CrossrefGoogle Scholar

  • WHO (2010) First WHO report on neglected tropical diseases: working to overcome the global impact of neglected tropical diseases. World Health Organization, WHO Press Google Scholar

  • Yeo M., Acosta N., Llewellyn M., Sanchez H., Adamson S., Miles G.A., Lopez E., Gonzalez N., Patterson J.S., Gaunt M.W., de Arias A.R., Miles M.A. 2005. Origins of Chagas disease: Didelphis species are natural hosts of Trypanosoma cruzi I and armadillos hosts of Trypanosoma cruzi II, including hybrids. International Journal of Parasitology, 35, 225-233. DOI:10.1016/j.ijpara.2004.10.024CrossrefGoogle Scholar

  • Zingales B., Andrade S.G., Briones M.R., Campbell D.A., Chiari E., Fernandes O., Guhl F., Lages-Silva E., Macedo A.M., Machado C.R., Miles M.A., Romanha A.J., Sturm N.R., Tibayrenc M., Schijman A.G. 2009. A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI. Memorias do Instituto Oswaldo Cruz, 104, 1051-1054Web of ScienceCrossrefGoogle Scholar

  • Zingales B., Miles M.A., Campbell D.A., Tibayrenc M., Macedo A.M., Teixeira M.M., Schijman A.G., Llewellyn M.S., Lages- Silva E., Machado C.R., Andrade S.G., Sturm N.R. 2012. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infection Genetic Evolution, 12, 240-253. DOI:10.1016/j.meegid.2011.12.009Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2014-11-06

Revised: 2015-02-04

Accepted: 2015-03-12

Published Online: 2015-06-16

Published in Print: 2015-09-01

Citation Information: Acta Parasitologica, Volume 60, Issue 3, Pages 435–441, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0060.

Export Citation

© W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Belén Mendoza de Molano, Concepción J. Puerta, Adriana Cuellar, Luis A. Orozco, Paola Lasso, Iván Enrique Rodríguez-Mantilla, Paula Pavia, Santiago Panesso-Gómez, and John M. González
The American Journal of Tropical Medicine and Hygiene, 2018, Volume 98, Number 3, Page 717
Julien Santi-Rocca, Fernando Fernandez-Cortes, Carlos Chillón-Marinas, María-Luisa González-Rubio, David Martin, Núria Gironès, and Manuel Fresno
Scientific Reports, 2017, Volume 7, Number 1
Nicolás Tomasini, Paula Gabriela Ragone, Sébastien Gourbière, Juan Pablo Aparicio, Patricio Diosque, and Roland R Regoes
PLOS Computational Biology, 2017, Volume 13, Number 5, Page e1005532
Glaucia Diniz Alessio, Fernanda Fortes de Araújo, Denise Fonseca Côrtes, Policarpo Ademar Sales Júnior, Daniela Cristina Lima, Matheus de Souza Gomes, Laurence Rodrigues do Amaral, Marcelo Antônio Pascoal Xavier, Andréa Teixeira-Carvalho, Olindo Assis Martins-Filho, Marta de Lana, and Carlos A. Buscaglia
PLOS Neglected Tropical Diseases, 2017, Volume 11, Number 3, Page e0005444
Carolina Hernández, Zulma Cucunubá, Carolina Flórez, Mario Olivera, Carlos Valencia, Pilar Zambrano, Cielo León, Juan David Ramírez, and Alain Debrabant
PLOS Neglected Tropical Diseases, 2016, Volume 10, Number 9, Page e0004997
Maykon Tavares de Oliveira, Renata Tupinambá Branquinho, Gláucia Diniz Alessio, Carlos Geraldo Campos Mello, Nívia Carolina Nogueira-de-Paiva, Cláudia Martins Carneiro, Max Jean de Ornelas Toledo, Alexandre Barbosa Reis, Olindo Assis Martins Martins-Filho, and Marta de Lana
Acta Tropica, 2017, Volume 167, Page 108

Comments (0)

Please log in or register to comment.
Log in