Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2018: 1.00

SCImago Journal Rank (SJR) 2018: 0.500
Source Normalized Impact per Paper (SNIP) 2018: 0.664

More options …
Volume 60, Issue 3


Effect of body size on the abundance of ectoparasitic mites on the wild rodent Oligoryzomys nigripes

Fernanda Rodrigues Fernandes
  • Corresponding author
  • Universidade Federal do Maranhão, Campus de São Bernardo. Rua Projetada, s/n, Perímetro Urbano, CEP 65550-000, São Bernardo, MA, Brasil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Leonardo Dominici Cruz
  • Universidade Federal do Maranhão, Campus de São Bernardo. Rua Projetada, s/n, Perímetro Urbano, CEP 65550-000, São Bernardo, MA, Brasil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Arício Xavier Linhares
  • Universidade Estadual de Campinas, Instituto de Biologia, Departamento de Biologia Animal. Caixa Postal 6109, Cidade Universitária, CEP 13083-970, Campinas, São Paulo, Brasil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Claudio José Von Zuben
  • Universidade Estadual Paulista Júlio de Mesquita Filho, Instituto de Biociências de Rio Claro, Departamento de Zoologia. Avenida 24A, 1515, Caixa Postal 199, Bela Vista. CEP 13506-900, Rio Claro, São Paulo, Brasil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-06-16 | DOI: https://doi.org/10.1515/ap-2015-0073


The abundance of parasites on a host can be affected by several factors; in this study, we investigated the influence of sex and body size of the host rodent Oligoryzomys nigripes on the abundance of ectoparasitic mites (Acari: Mesostigmata). The generalized linear model indicated that body size (indicative of age) of the host rodent O. nigripes significantly contributed to the variation in the abundance of mites on host rodents at the Experimental Station of Itirapina. This trend of increased parasitism on hosts with larger body sizes may be linked to the fact that larger individuals are able to support the coexistence of a larger number of parasites, and being more mobile, are more exposed to infection by parasites.

Keywords : Abundance; age; body mass; mites; small mammal


  • Atkinson A.C. 1987. Plots, transformations and regressions: an introduction to graphical methods of diagnostic regression analysis. Oxford University Press, London, pp. 296Google Scholar

  • Arneberg P., Skorping A., Grenfell B., Read A.F. 1998. Host densities as determinants of abundance in parasite communities. Proceedings of the Royal Society of London. Biological Sciences, 265, 1283-1289. DOI: 10.1098/rspb.1998.0431CrossrefGoogle Scholar

  • Bergallo H.G. 1994. Ecology of small mammal community in an Atlantic Forest area in Southeastern Brazil. Studies on Neotropical Fauna and Environment, 29, 197-217. DOI: 10.1080/ 01650529409360932 Effect of body size on mite abundance on wild rodent 52CrossrefGoogle Scholar

  • Bordes F., Morand S., Kelt D.A., van Vuren D.H. 2009. Home range and parasite diversity in mammals. American Naturalist, 173, 467-474. DOI: 10.1086/597227Web of ScienceCrossrefGoogle Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575-583. DOI:10. 2307/3284227CrossrefGoogle Scholar

  • Cameron A.C., Trivedi P.K. 1998. Regression Analysis of Count Data. Cambridge University Press, Cambridge, pp. 432Google Scholar

  • Darolova A., Hoi H., Kristofik J., Hoi C. 2001. Horizontal and vertical ectoparasite transmission of three species of malophaga, and individual variation in European bee-eaters (Merops apiaster). Journal of Parasitology, 87, 256-262. DOI: 10.1645/ 0022-3395(2001)087[0256:HAVETO]2.0.CO;2CrossrefGoogle Scholar

  • Dobson A. 2004. Population dynamics of pathogens with multiple host species. American Naturalist, 164, S64-S78. DOI: 10.1086/424681CrossrefGoogle Scholar

  • Dowling A.P.G., O’Connor B.M. 2010. Phylogeny of Dermanyssoidea (Acari: Parasitiformes) suggests multiple origins of parasitism. Acarologia, 50, 113-129. DOI: 10.1051/acarologia/ 20101957CrossrefGoogle Scholar

  • Ezenwa V.O., Price S.A., Altizer S., Vitone N.D., Cook K.C. 2006. Host traits and parasite species richness in even and odd-toed hoofed mammals, Artiodactyla and Perissodactyla. Oikos, 115, 526-536. DOI: 10.1111/j.2006.0030-1299.15186.x CrossrefGoogle Scholar

  • Fernandes F.R., Cruz L.D., Martins E.G., Reis S.F. 2010. Growth and home range size of gracile mouse opossum Gracilinanus microtarsus (Marsupialia: Didelphidae) in Brazilian cerrado. Journal of Tropical Ecology, 26, 185-192. DOI: 10.1017/ S0266467409990526CrossrefWeb of ScienceGoogle Scholar

  • Fernandes F.R., Cruz L.D., Linhares A.X. 2012. Effects of sex and locality on the abundance of lice on the wild rodent Oligoryzomys nigripes. Parasitology Research, 111, 1701-1706. DOI: 10.1007/s00436-012-3009-4Web of ScienceCrossrefGoogle Scholar

  • Furman, D.P. 1972. Mites of the family Laelapidae in Venezuela (Acarina: Laelapidae). Brigham Young University Science Bulletin. Biological Series, 17, 1-58.Google Scholar

  • Goodland R. 1971. A physiognomic analysis of the ‘cerrado’ vegetation of Central Brazil. Journal of Ecology, 59, 411-419. DOI: 10.2307/2258321CrossrefGoogle Scholar

  • Harbison C.W., Jacobsen M.V., Clayton D.H. 2009. Hitchhiker’s guide to parasite transmission: phoretic behavior of feather lice. International Journal of Parasitology, 39, 569-575. DOI: 10.1016/j.ijpara.2008.09.014Web of ScienceCrossrefGoogle Scholar

  • Hawlena H., Abramsky Z., Krasnov B.R. 2005. Age-biased parasitism and density-dependent distribution of fleas (Siphonaptera) on a desert rodent. Oecologia, 146, 200-208. DOI: 10.1007/s00442-005-0187-0CrossrefGoogle Scholar

  • Houck M.A., O’Connor B.M. 1991. Ecological and evolutionary significance of phoresy in the Astigmata. Annual Review of Entomology, 36, 611-636. DOI: 10.1146/annurev.en.36.010191. 003143CrossrefGoogle Scholar

  • Jones C., McShea W.J., Conroy M.J., Kunz T.H. 1996. Capturing mammals. In (Ed. D.E. Wilson, F.R. Cole, J.D. Nichols, R. Rudran, M.S. Foster) Measuring and monitoring biological diversity. Standard methods for mammals. Smithsonian Institution Press, Washington, 115-155Google Scholar

  • Kiffner C., Stanko M., Morand S., Khokhlova I.S., Shenbrot G.I, Laudisoit A., Leirs H., Hawlena H., Krasnov B.R. 2014. Variable effects of host characteristics on species richness of flea infracommunities in rodents from three continents. Parasitology Research, 113, 2777-2788. DOI: 10.1007/s00436-014-3937-2Web of ScienceCrossrefGoogle Scholar

  • Klein S.L. 2004. Hormonal and immunological mechanisms mediating sex differences in parasite infection. Parasite Immunology, 26, 247-264. DOI: 10.1111/j.0141-9838.2004.00710.x CrossrefGoogle Scholar

  • Krantz, G.W., Walter, D.E. 2009. A manual of acarology (Third edition). Texas Tech University Press, Texas, pp. 807Google Scholar

  • Krasnov B.R., Khokhlova I.S., Shenbrot G.I. 2002. The effect of host density on ectoparasite distribution: an example of a rodent parasitized by fleas. Ecology, 83, 164-175. DOI: 10.1890/ 0012-9658(2002)083[0164:TEOHDO]2.0.CO;2CrossrefGoogle Scholar

  • Krasnov B.R., Mouillot D., Khokhlova I.S., Shenbrot G.I., Poulin R. 2005. Covariance in species diversity and facilitation among non-interactive parasite taxa: all against the host. Parasitology, 131, 557-568. DOI: 10.1017/S0031182005007912CrossrefGoogle Scholar

  • Krasnov B.R., Stanko M., Miklisova D., Morand S. 2006. Habitat variation in species composition of flea assemblages on small mammals in central Europe. Ecological Research, 21, 460-469. DOI: 10.1007/s11284-005-0142-x CrossrefGoogle Scholar

  • Kuris A.M., Blaustein A.R., Alio J.J. 1980. Hosts as islands. American Naturalist, 116, 570-586. DOI: 10.2307/2460445CrossrefGoogle Scholar

  • Lareschi M., Krasnov B.R. 2010. Determinants of ectoparasite assemblage structure on rodent hosts from South American marshlands: the effect of host species, locality and season. Medical and Veterinary Entomology, 24, 284-292. DOI: 10.1111/j.1365-2915.2010.00880.x Web of ScienceCrossrefGoogle Scholar

  • Lindenfors P., Nunn C.L., Jones K.E., Cunningham A.A., Sechrest W., Gittleman J.L. 2007a. Parasite species richness in carnivores: effects of host body mass, latitude, geographical range and population density. Global Ecology and Biogeography, 16, 496-509. DOI: 10.1111/j.1466-8238.2006.00301.x CrossrefWeb of ScienceGoogle Scholar

  • Lindenfors P., Gittleman J.L., Jones K.E. 2007b. Sexual size dimorphism in mammals. In: (Eds. D.J. Fairbairn, W.U. Blanckenhorn and T. Szekely). Sex, size, and gender roles: evolutionary studies of sexual size dimorphism. Oxford University Press, New York, 16-26Google Scholar

  • Martins-Hatano F., Gettinger D., Bergallo H.G. 2002. Ecology and host specificity of Laelapine mites (Acari: Laelapidae) of small mammals in an Atlantic forest area of Brazil. Journal of Parasitology, 88, 36-40. DOI: 10.1645/0022-3395(2002)088 [0036:EAHSOL]2.0.CO;2CrossrefGoogle Scholar

  • McNab B.K. 1963. Bioenergetics and the determination of home range size. American Naturalist, 97, 133-140. DOI: 10.2307/ 2458903CrossrefGoogle Scholar

  • Moore S.L., Wilson K. 2002. Parasites as a viability cost of sexual selection in natural populations of mammals. Science, 297, 2015-2018. DOI: 10.1126/science.1074196CrossrefGoogle Scholar

  • Nunn C.L., Altizer S., Jones K.E., Sechrest W. 2003. Comparative tests of parasite species richness in primates. American Naturalist, 162, 597-614. DOI: 10.1086/378721CrossrefGoogle Scholar

  • Perdue B.M., Snyder R.J., Zhihe Z., Marr M.J., Maple T.L. 2011. Sex differences in spatial ability: a test of the range size hypothesis in the order Carnivora. Biology Letters, 7, 380-383. DOI: 10.1098/rsbl.2010.1116CrossrefWeb of ScienceGoogle Scholar

  • Pilosof S., Fortuna M.A., Vinarski M.V., Korallo-Vinarskaya N.P., Krasnov B.R. 2013. Temporal dynamics of direct reciprocal and indirect effects in a host-parasite network. Journal of Animal Ecology, 82, 987-996. DOI: 10.1111/1365-2656.12090Web of ScienceCrossrefGoogle Scholar

  • Poulin R. 2007. Evolutionary ecology of parasites. (Second edition). Princeton University Press, New Jersey, pp. 332Google Scholar

  • Püttker T., Meyer-Lucht Y., Sommer S. 2006. Movement distances of five rodent and two marsupial species in forest fragments of the coastal Atlantic rainforest, Brazil. Ecotropica, 12, 131-139. URL: http://www.gtoe.de/public_html/publications/pdf/ 12-2/Puettker%20et%20al.pdf Google Scholar

  • R Development Core Team. 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. (http://www.r-project.org/) Google Scholar

  • Radovsky F.J. 1985. Evolution of mesostigmate mites. In (Ed. K.C. Kim) Coevolution of parasitic arthropods and mammals. Wiley-Interscience, New York, 441-568. Google Scholar

  • Radovsky F.J. 1994. The evolution of parasitism and the distribution of some Dermanyssoid mites (Mesostigmata) on vertebrate hosts. In (Ed. M.A. Houck) Mites: ecological and evolutionary analyses of life-history patterns. Chapman and Hall, New York, 186-217Google Scholar

  • Rudran R. 1996. General marking techniques. In (Ed. D.E. Wilson, F.R. Cole, J.D. Nichols, R. Rudran, M.S. Foster) Measuring and monitoring biological diversity. Standard methods for mammals. Smithsonian Institution Press, Washington, 299-304Google Scholar

  • Ryder J.J., Miller M.R., White A., Knell R.J., Boots M. 2007. Hostparasite population dynamics under combined frequency- and density-dependent transmission. Oikos, 116, 2017-2026. DOI: 10.1111/j.2007.0030-1299.15863.x Web of ScienceCrossrefGoogle Scholar

  • Shaw D.J., Grenfell B.T., Dobson A.P. 1998. Patterns of macroparasite aggregation in wildlife host populations. Parasitology, 117, 597-610. DOI: 10.1017/S0031182098003448CrossrefGoogle Scholar

  • Sokal R.R., Rohlf F.J. 2012. Biometry (Fourth edition). W.H. Freeman and Company, New York, pp. 937Google Scholar

  • Valera F., Casas-Criville A., Hoi H. 2003. Interspecific parasite exchange in a mixed colony of birds. Journal of Parasitology, 89, 245-250. DOI: 10.1645/0022-3395(2003)089[02 45:IPEIAM]2.0.CO;2CrossrefGoogle Scholar

  • Zeileis A., Kleiber C., Jackman S. 2008. Regression Models for Count Data in R. Journal of Statistical Software, 27, 1-25 (http://www.jstatsoft.org/v27/i08).Google Scholar

  • Watson J. 2008. New building, old parasite: mesostigmatid mites - an ever-present threat to barrier rodent facilities. Institute for Laboratory Animal Research, 49, 303-309. DOI: 10.1093/ ilar.49.3.303CrossrefGoogle Scholar

About the article

Received: 2014-10-09

Revised: 2015-02-20

Accepted: 2015-04-01

Published Online: 2015-06-16

Published in Print: 2015-09-01

Citation Information: Acta Parasitologica, Volume 60, Issue 3, Pages 515–524, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0073.

Export Citation

© W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

John A. Marino
Parasitology Research, 2016, Volume 115, Number 12, Page 4477

Comments (0)

Please log in or register to comment.
Log in