Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

See all formats and pricing
More options …
Volume 60, Issue 4


Coexistence of Borrelia burgdorferi s.l. genospecies within Ixodes ricinus ticks from central and eastern Poland

Hubert Sytykiewicz / Grzegorz Karbowiak
  • W. Stefański Institute of Parasitology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Joanna Chorostowska-Wynimko / Adam Szpechciński / Marta Supergan-Marwicz / Marcin Horbowicz / Magdalena Szwed / Paweł Czerniewicz / Iwona Sprawka
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/ap-2015-0093


The purpose of the study was to assess the prevalence and coinfection rates of Borrelia burgdorferi sensu lato genotypes in Ixodes ricinus (L.) ticks sampled from diverse localities in central and eastern regions of Poland. In years 2009-2011, questing nymphs and adults of I. ricinus were collected using a flagging method at 18 localities representing distinct ecosystem types: urban green areas, suburban forests and rural woodlands. Molecular detection of B. burgdorferi s.l. genospecies was based on amplification of a fla gene using nested PCR technique, subsequent PCR-RFLP analysis and bidirectional sequencing. It was revealed that 45 samples (2.1%) harboured two different B. burgdorferi s.l. genospecies, whereas triple infections with various spirochetes was found in 11 (0.5%) individuals. Generally, the highest average coinfection rates were evidenced in arachnids gathered at rural woodlands, intermediate at suburban forests, while the lowest were recorded at urban green areas. Overall, single spirochete infections were noted in 16.3% (n = 352/2,153) ticks. Importantly, it is the first report evidencing the occurrence of Borrelia miyamotoi (0.3%, n = 7/2153) in I. ricinus populations within central Poland. Circumstantial variability of B. burgdorferi s.l. genospecies in the common tick individuals sampled at various habitat types in central and eastern Poland was displayed. The coexistence of two or three different spirochete genospecies in single adult ticks, as well as the presence of B. miyamotoi were demonstrated. Therefore, further studies uncovering the co-circulation of the tested bacteria and other human pathogens in I. ricinus ticks are required.

Keywords: Borrelia burgdorferi sensu lato genospecies; Borrelia miyamotoi; Ixodes ricinus; coinfection; prevalence; molecular diagnostics


  • Capelli G., Ravagnan S., Montarsi F., Ciocchetta S., Cazzin S., Porcellato E., Babiker A.M., Cassini R., Salviato A., Cattoli G., Otranto D. 2012. Occurrence and identification of risk areas of Ixodes ricinus-borne pathogens: a cost-effectiveness analysis in north-eastern Italy. Parasites & Vectors, 5, 61. DOI: 10.1186/1756-3305-5-61Web of ScienceCrossrefPubMedGoogle Scholar

  • Cisak E., Chmielewska-Badora J., Zwoliński J., Wojcik-Fatla A., Zajac V., Skórska C., Dutkiewicz J. 2008. Study on Lyme borreliosis focus in the Lublin region (eastern Poland). Annals of Agricultural and Environmental Medicine, 15, 327-332Google Scholar

  • Cisak E., Wójcik-Fatla A., Stojek N., Chmielewska-Badora J., Zwoliński J., Buczek A., Dutkiewicz J. 2006. Prevalence of Borrelia burgdorferi genospecies in Ixodes ricinus ticks from Lublin region (eastern Poland). Annals of Agricultural and Environmental Medicine, 13, 301-306Web of ScienceGoogle Scholar

  • Cosson J.F., Michelet L., Chotte J., Le Naour E., Cote M., Devillers E., Poulle M.L., Huet D., Galan M., Geller J., Moutailler S., Vayssier-Taussat M. 2014. Genetic characterization of the human relapsing fever spirochete Borrelia miyamotoi in vectors and animal reservoirs of Lyme disease spirochetes in France. Parasites & Vectors, 7, 233. DOI: 10.1186/1756-3305-7-233CrossrefPubMedWeb of ScienceGoogle Scholar

  • Derdáková M., Lencáková D. 2005. Association of genetic variability within the Borrelia burgdorferi sensu lato with the ecology, epidemiology of Lyme borreliosis in Europe. Annals of Agricultural and Environmental Medicine, 12, 165-172Google Scholar

  • Dzięgiel B., Kubrak T., Adaszek Ł., Dębiak P., Wyłupek D., Bogucka-Kocka A., Lechowski J., Winiarczyk S. 2014. Prevalence of Babesia canis, Borrelia burgdorferi sensu lato, and Anaplasma phagocytophilum in hard ticks collected from meadows of Lubelskie Voivodship (eastern Poland). Bulletin of the Veterinary Institute in Pulawy, 58, 29-33. DOI: 10.2478/bvip-2014-0005CrossrefWeb of ScienceGoogle Scholar

  • Ferquel E., Garnier M., Marie J., Bernède-Bauduin C., Baranton G., Pérez-Eid C., Postic D. 2006. Prevalence of Borrelia burgdorferi sensu lato and Anaplasmataceae members in Ixodes ricinus ticks in Alsace, a focus of Lyme borreliosis endemicity in France. Applied and Environmental Microbiology, 72, 3074-3078. DOI: 10.1128/AEM.72.4.3074-3078.2006CrossrefGoogle Scholar

  • Fingerle V., Schulte-Spechtel U.C., Ruzic-Sabljic E., Leonhard S., Hofmann H., Weber K., Pfister K., Strle F., Wilske B. 2008. Epidemiological aspects and molecular characterization of Borrelia burgdorferi s.l. from southern Germany with special respect to the new species Borrelia spielmanii sp. nov. International Journal of Medical Microbiology, 298, 279-290Web of ScienceGoogle Scholar

  • Geller J., Nazarova L., Katargina O., Golovljova I. 2013. Borrelia burgdorferi sensu lato prevalence in tick populations in Estonia. Parasites & Vectors, 6, 202. DOI: 10.1186/1756-3305-6-202CrossrefWeb of SciencePubMedGoogle Scholar

  • Geller J., Nazarova L., Katargina O., Järvekülg L., Fomenko N., Golovljova I. 2012. Detection and genetic characterization of relapsing fever spirochete Borrelia miyamotoi in Estonian ticks. PLoS One, 7, e51914. DOI: 10.1371/journal.pone. 0051914CrossrefWeb of ScienceGoogle Scholar

  • Jenkins A., Hvidsten D., Matussek A., Lindgren P.E., Stuen S., Kristiansen B.E. 2012. Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from Norway: evaluation of a PCR test targeting the chromosomal flaB gene. Experimental and Applied Acarology, 58, 431-439. DOI: 10.1007/s10493-012-9585-2CrossrefWeb of SciencePubMedGoogle Scholar

  • Lommano E., Bertaiola L., Dupasquier C., Gern L. 2012. Infections and coinfections of questing Ixodes ricinus ticks by emerging zoonotic pathogens in Western Switzerland. Applied and Environmental Microbiology, 78, 4606-4612. DOI: 10.1128/ AEM.07961-11Web of ScienceCrossrefGoogle Scholar

  • Pangrácová L., Derdáková M., Pekárik L., Hviščová I., Víchová B., Stanko M., Hlavatá H., Peťko B. 2013. Ixodes ricinus abundance and its infection with the tick-borne pathogens in urban and suburban areas of Eastern Slovakia. Parasites & Vectors, 6, 238. DOI: 10.1186/1756-3305-6-238Web of ScienceCrossrefGoogle Scholar

  • Pejchalová K., Zákovská A., Mejzlíková M., Halouzka J., Dendis M. 2007. Isolation, cultivation and identification of Borrelia burgdorferi genospecies from Ixodes ricinus ticks from the city of Brno, Czech Republic. Annals of Agricultural and Environmental Medicine, 14, 75-79Google Scholar

  • Platonov A.E., Karan L.S., Kolyasnikova N.M., Makhneva N.A., Toporkova M.G., Maleev V.V., Fish D., Krause P.J. 2011. Humans infected with relapsing fever spirochete Borrelia miyamotoi, Russia. Emerging Infectious Diseases, 17, 1816-1823. DOI: 10.3201/eid1710.101474PubMedWeb of ScienceCrossrefGoogle Scholar

  • Rosef O., Radzijevskaja J., Kløcker L., Paulauskas A. 2014. The prevalence of Borrelia burgdorferi sensu lato in questing Ixodes ricinus ticks in Norway. Biologija, 60, 33-45.CrossrefGoogle Scholar

  • Schulz M., Mahling M., Pfister K. 2014. Abundance and seasonal activity of questing Ixodes ricinus ticks in their natural habitats in southern Germany in 2011. Journal of Vector Ecology, 39, 56-65. DOI: 10.1111/j.1948-7134.2014.12070.x Web of ScienceCrossrefGoogle Scholar

  • Schwarz A., Hönig V., Vavrušková Z., Grubhoffer L., Balczun C., Albring A., Schaub G.A. 2012. Abundance of Ixodes ricinus and prevalence of Borrelia burgdorferi s.l. in the nature reserve Siebengebirge, Germany, in comparison to three former studies from 1978 onwards. Parasites & Vectors, 5, 268. DOI: 10.1186/1756-3305-5-268PubMedWeb of ScienceCrossrefGoogle Scholar

  • Skotarczak B., Wodecka B., Cichocka A. 2002. Coexistence DNA of Borrelia burgdorferi sensu lato and Babesia microti in Ixodes ricinus ticks from north-western Poland. Annals of Agricultural and Environmental Medicine, 9, 25-28Google Scholar

  • Smetanová K., Burri C., Pérez D., Gern L., Kocianová E. 2007. Detection and identification of Borrelia burgdorferi sensu lato genospecies in ticks from three different regions in Slovakia. Wiener Klinische Wochenschrift, 119, 534-537. DOI: 10.1007/s00508-007-0851-y Web of ScienceCrossrefPubMedGoogle Scholar

  • Stańczak J., Kubica-Biernat B., Racewicz M., Kruminis-Łozowska W., Kur J. 2000. Detection of three genospecies of Borre lia burgdorferi sensu lato in Ixodes ricinus ticks collected from different regions of Poland. International Journal of Medical Microbiology, 290, 559-566Google Scholar

  • Sytykiewicz H., Karbowiak G., Werszko J., Czerniewicz P., Sprawka I., Mitrus J. 2012. Molecular screening for Bartonella henselae and Borrelia burgdorferi sensu lato co-existence within Ixodes ricinus populations in central and eastern parts of Poland. Annals of Agricultural and Environmental Medicine, 19, 451-456Google Scholar

  • Vennestrøm J., Egholm H., Jensen P.M. 2008. Occurrence of multiple infections with different Borrelia burgdorferi genospecies in Danish Ixodes ricinus nymphs. Parasitology International, 57, 32-37 CrossrefWeb of SciencePubMedGoogle Scholar

  • Wodecka B., Leońska A., Skotarczak B. 2010. A comparative analysis of molecular markers for the detection and identification of Borrelia spirochaetes in Ixodes ricinus. Journal of Medical Microbiology, 59, 309-314. DOI: 10.1099/jmm.0.013508-0Web of ScienceCrossrefGoogle Scholar

  • Wodecka B., Rymaszewska A., Skotarczak B. 2014. Host and pathogen DNA identification in blood meals of nymphal Ixodes ricinus ticks from forest parks and rural forests of Poland. Experimental and Applied Acarology, 62, 543-555. DOI: 10.1007/s10493-013-9763-x PubMedWeb of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-04-18

Revised: 2015-04-20

Accepted: 2015-05-13

Published Online: 2015-09-25

Published in Print: 2015-12-01

Citation Information: Acta Parasitologica, Volume 60, Issue 4, Pages 654–661, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0093.

Export Citation

W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Sharon Page, Christina Daschkin, Sirli Anniko, Viktoria Krey, Carsten Nicolaus, and Horst-Guenter Maxeiner
Experimental and Applied Acarology, 2018
Pablo Díaz, Jose Luis Arnal, Susana Remesar, Ana Pérez-Creo, José Manuel Venzal, María Esther Vázquez-López, Alberto Prieto, Gonzalo Fernández, Ceferino Manuel López, Rosario Panadero, Alfredo Benito, Pablo Díez-Baños, and Patrocinio Morrondo
Parasites & Vectors, 2017, Volume 10, Number 1
Scott J. Layzell, Daniel Bailey, Mick Peacey, and Patricia A. Nuttall
Ticks and Tick-borne Diseases, 2017
Zuzana Hamšíková, Claudia Coipan, Lenka Mahríková, Lenka Minichová, Hein Sprong, and Mária Kazimírová
Microbial Ecology, 2017, Volume 73, Number 4, Page 1000

Comments (0)

Please log in or register to comment.
Log in