Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 60, Issue 4

Issues

Auto-infection by Echinostoma spp. cercariae in Helisoma anceps

Michael R. Zimmermann
  • Corresponding author
  • Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, USA
  • Department of Biology, Shenandoah University, Winchester, Virginia 22601, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kyle E. Luth / Gerald W. Esch
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/ap-2015-0099

Abstract

Auto-infection is a life history strategy used by many parasitic organisms, including digenetic trematodes. The process of autoinfection most frequently involves the transfer of a life cycle stage of the parasite from one site to another inside the same host, usually accompanied by morphological transformation. Moreover, among trematodes, the stage being transferred may also move from one host to another in completing the life cycle, i.e., an indirect cycle. Echinostoma spp. parasites offer the opportunity to study auto-infection because they utilize gastropods as both first and second intermediate hosts. Rejection of a null model predicting independent infection of first and second intermediate larval stages coupled with the presence of rediae being the best predictor of metacercariae prevalence and intensity suggests that auto-infection by Echinostoma spp. cercariae is occurring in their molluscan hosts. Shell length was also found to be a significant predictor of metacercariae intensity in the snails hosts, but this is most likely attributed to larger snails being more commonly infected with Echinostoma spp. rediae as opposed to an increased likelihood of cercariae infection. Auto-infection as a life history strategy increases transmission success of the parasite, but may also have negative consequences for the parasite that necessitate auto-infection coupled with the release of cercariae to maximize transmission success and host survival.

Keywords: Echinostoma; cercariae; rediae; trematode; auto-infection; snail

References

  • Bolek M.G., Janovy Jr. J. 2008. Alternative life cycle strategies of Megalodiscus temperatus in tadpoles and metamorphosed anurans. Parasite, 15, 396-401. DOI: 10.1051/parasite/2008153396CrossrefWeb of ScienceGoogle Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M., Schostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 573-583. DOI: 10.2307/ 3284227CrossrefGoogle Scholar

  • Chernin E. 1962. The unusual life-history of Daubaylia potomaca (Nematoda: Cephalobidae) in Australorbis glabratus and in certain other fresh-water snails. Journal of Parasitology, 52, 459-481. DOI: 10.1017/S0031182000027268CrossrefGoogle Scholar

  • Detwiler J.T. 2010. The molecular ecology of echinostome trematodes: Elucidating the phylogenetics and transmission dynamics of a freshwater helminth parasite. Ph.D. Dissertation. Purdue University, West Lafayette, Indiana, U.S.A Google Scholar

  • Detwiler J.T., Minchella D.J. 2009. Intermediate host availability masks the strength of experimentally derived colonization patterns in echinostome trematodes. International Journal for Parasitology, 39, 585-590. DOI: 10.1016/j.ijpara.2008.10.008Web of ScienceCrossrefGoogle Scholar

  • Dybdahl M.F., Lively C.M. 1998. Host-parasite coevolution: Evidence for rare advantage and time-lagged selection in a natural population. Evolution, 52, 1057-1066. DOI: 10.2307/2411236CrossrefGoogle Scholar

  • Esch G.W., Barger M.A., Fellis K.J. 2002. The transmission of digenetic trematodes: Style, elegance, complexity. Integrative and Comparative Biology, 42, 304-312. DOI: 10.1093/icb/42.2.304CrossrefGoogle Scholar

  • Esch G.W., Fernandez J.C. 1994. Snail-trematode interactions and parasite community dynamics in aquatic systems: A review. American Midland Naturalist, 131, 209-237.Google Scholar

  • Esteban J.G., Munoz-Antoli C. 2009. Echinostomes: Systematics and life cycles. In: (Eds. B.R. Fried and R. Toledo) The biology of echinostomes: From the molecule to the community. Springer LLC, New York, New York, 1-34Google Scholar

  • Evans N.A., Gordon D.M. 1983. Experimental observations on the specificity of Echinoparyphium recurvatum toward second intermediate hosts. Parasitology Research, 69, 217-222. DOI: 10.1007/BF00926956CrossrefGoogle Scholar

  • Fried B., Bennett M.C. 1979. Studies on encystment of Echinostoma revolutum cercariae. Journal of Parasitology, 65, 38-40. DOI: 10.2307/3280199CrossrefGoogle Scholar

  • Garcia H.H., Gonzalez A.E., Evans C.A.W., Gilman R.H. 2003. Taenia solium cysticercosis. The Lancet, 361, 547-556. DOI: 10.1016/S0140-6736(03)14117-7CrossrefGoogle Scholar

  • Haas W., Haberl B. 1997. Host recognition by trematode miracidia and cercaria. In: (Eds. B. Fried and T.K. Graczyk) Advances in trematode biology. CRC Press, Boca Raton, Florida, 197-227Google Scholar

  • Haas W., Haberl B., Kalbe M., Korner M. 1995. Snail-host-finding by miracidia and cercariae: Chemical host cues. Parasitology Today, 11, 468-472. DOI: 10.1016/0169-4758(95)80066-2CrossrefGoogle Scholar

  • Haberl B., Korner M., Spengler Y., Hertel J., Kalbe M., Haas W. 2000. Host-finding in Echinostoma caproni: Miracidia and cercariae use different signals to identify the same snail species. Parasitology, 120, 479-486. DOI: 10.1017/S0031182099005697CrossrefGoogle Scholar

  • Johnson P.T.J., McKenzie V.J. 2009. Effects of environmental change on helminth infections in amphibians: Exploring the emergence of Ribeiroia and Echinostoma infections in North America. In: (Eds. B.R. Fried and R. Toledo) The biology of echinostomes: From the molecule to the community. Springer LLC, New York, New York, 249-280Google Scholar

  • Jokela J., Lively C.M. 1995. Spatial variation in infection by digenetic trematodes in a population of freshwater snails (Potamopyrgus antipodarum). Oecologia, 103, 509-517. DOI: 10.1007/BF00328690CrossrefGoogle Scholar

  • Kaneko J.J., Yamada R., Brock J.A., Nakamura R.M. 2006. Infection of tilapia, Oreochromis mossambicus (Trewavas), by a marine monogenean, Neobenedenia melleni (MacCallum, 1927) Yamaguti, 1963 in Kaneohe Bay, Hawaii, USA, and its treatment. Journal of Fish Disease, 11, 295-300. DOI: 10.1111/j.1365-2761.1988.tb01225.x CrossrefGoogle Scholar

  • Kuris A.M., Warren J. 1980. Echinostome cercarial penetration and metacercarial encystment as mortality factors for a second intermediate host, Biomphalaria glabrata. Journal of Parasitology, 66, 630-635. DOI: 10.2307/3280520CrossrefGoogle Scholar

  • Kuris A.M., Lafferty K.D. 1994. Community structure: Larval trematodes in snail hosts. Annual Review of Ecology, Evolution, and Systematics, 25, 189-217. DOI: 10.1146/annurev.es.25.110194.001201CrossrefGoogle Scholar

  • Lo C.T. 1975. Echinostoma macrorchis: Life history, population dynamics of intramolluscan stages, and the first and second intermediate hosts. Journal of Parasitology, 81, 569-576. DOI: 10.2307/3283855CrossrefGoogle Scholar

  • Lo C.T., Cross J.H. 1975. Observations on the host-parasite relations between Echinostoma revolutum and lymnaeid snails. Chinese Journal of Microbiology and Immunology, 8, 241-252. DOI: 1243895Google Scholar

  • MacKenzie K. 1981. The effect of Eimeria sp. infection on the condition of blue whiting, Micromesistius poutassou (Risso). Journal of Fish Disease, 4, 473-486. DOI: 10.1111/j.1365-2761.1981.tb01160.x CrossrefGoogle Scholar

  • McCarthy A.M., Kanev I. 1990. Pseudechinoparyphium echinatum (Digenea: Echinostomatidae): Experimental observations on cercarial specificity toward second intermediate hosts. Parasitology, 100, 423-428. DOI: 10.1017/S0031182000078719CrossrefGoogle Scholar

  • McCoy K.D., Buolinier T., Tirard C., Michalakis Y. 2003. Host-dependent genetic structure of parasite populations: Differential dispersal of seabird tick host races. Evolution, 57, 288-296. DOI: 10.1554/0014-3820(2003)057[0288:HDGSOP]2.0.CO;2CrossrefGoogle Scholar

  • Morley N.J., Crane M., Lewis J.W. 2004. Influence of cadmium exposure on the incidence of first intermediate host encystment by Echinoparyphium recurvatum cercariae in Lymnaea peregra. Journal of Helminthology, 78, 329-332. DOI: 10.1079/JOH2004267CrossrefGoogle Scholar

  • Neva F.A. 1986. Biology and immunology of human strongyloidiasis. Journal of Infectious Disease, 153, 397-406. DOI: 10.1093/infdis/153.3.397CrossrefGoogle Scholar

  • Olsen O.W. 1937. Description and life history of the trematode Haplotrana utahensis sp. nov. (Plagiochiidae) from Rana pretiosa. Journal of Parasitology, 23, 13-28Google Scholar

  • Pechenik J.A., Fried B. 1995. Effect of temperature on survival and infectivity of Echinostoma trivolvis cercariae: A test of the energy limitation hypothesis. Parasitology, 111, 373-378. DOI: 10.1017/S0031182000081920CrossrefGoogle Scholar

  • Poulin R., Cribb T.H. 2002. Trematode life cycles: Short is sweet? Trends in Parasitology, 18, 176-183. DOI: 10.1016/S1471-4922(02)02262-6CrossrefGoogle Scholar

  • Rankin Jr. J.S. 1944. A review of the trematode genus Glypthelmins Stafford 1905, with an account of the life cycle of G. quieta (Stafford, 1900) Stafford, 1905. Transactions of the American Microscopical Society, 63, 30-43Google Scholar

  • Rees F.G. 1932. An investigation into the occurrence, structure and life histories of the trematode parasites of four species of Lymnaea (Lymnaea truncatula (Mull), Lymnaea palustris (Mull), and Lymnaea stagnalis (Linne)), and Hydrobia jenkinsi (Smith) in Glamorgan and Monmouth. Proceedings of the Zoological Society of London, 1932, 1-32Google Scholar

  • Sandland G.J., Goater C.P., Danylchuk A.J. 2001. Population dynamics of Ornithodiplostomum ptychocheilus metacercariae in fathead minnows (Pimephales promelas) from four northern Alberta lakes. Journal of Parasitology, 87, 744-748. DOI: 10.1645/0022-3395(2001)087[0744:PDOOPM]2.0.CO;2CrossrefGoogle Scholar

  • Sorensen R.E., Minchella D.J. 2001. Snail-trematode life history interactions: Past trends and future directions. Parasitology, 123, S3-S18. DOI: 10.1017}S0031182001007843.Google Scholar

  • Sousa W.P. 1983. Host life history and the effect of parasitic castration on growth: A field study of Cerithidea californica Haldeman (Gastropoda: Prosobranchia) and its trematode parasites. Journal of Experimental Marine Biology and Ecology, 73, 273-296. DOI: 10.1016/0022-0981(83)90051-5CrossrefGoogle Scholar

  • Sullivan J.J., Byrd E.E. 1970. Choledocystus pennsylvaniensis: Life history. Transactions of the American Microscopical Society, 89, 384-396Google Scholar

  • Trouve S., Renaud F., Durand P., Jourdane J. 1996. Selfing and outcrossing in a parasitic hermaphrodite helminth (Trematoda, Echinostomatidae). Heredity, 77, 1-8. DOI: 10.1038/hdy.1996.101CrossrefGoogle Scholar

  • Tzipori S. 1988. Cryptosporidiosis in perspective. Advances in Parasitology, 27, 63-129 Google Scholar

  • Vareille-Morel C., Esclaire F., Hourdin P., Rondelaude D. 1993. Internal metacercarial cysts of Fasciola hepatica in the pulmonate snail Lymnaea truncatula. Parasitology Research, 79, 259-260Google Scholar

  • Wesenberg-Lund, C. 1934. Contributions to the development of the Trematoda. Part 2. The biology of the freshwater cercariae in Danish freshwaters. Memoires de l’Academie Royale des Sciences et des Lettres de Danemark, Copenhague, Section des Sciences, 9me Serie, Tome 5, 1-223Google Scholar

  • Whittington I.D. 1997. Reproduction and host-location among the parasitic Platyhelminthes. International Journal for Parasitology, 27, 705-714Google Scholar

  • Zimmermann M.R., Luth K.E., Camp L.E., Esch G.W. 2011a. Population and infection dynamics of Daubaylia potomaca (Nematoda: Rhabditida) in Helisoma anceps. Journal of Parasitology, 97, 384-388. DOI: 10.1645/GE-2603.1Web of ScienceCrossrefGoogle Scholar

  • Zimmermann M.R., Luth K.E., Esch G.W. 2011b. The unusual life cycle of Daubaylia potomaca, a nematode parasite of Helisoma anceps. Journal of Parasitology, 97, 430-434. DOI: 10.1645/GE-2604.1CrossrefWeb of ScienceGoogle Scholar

  • Zimmermann M.R., Luth K.E., Esch G.W. 2011c. Complex interactions among a nematode parasite (Daubaylia potomaca), a commensalistic annelid (Chaetogaster limnaei limnaei), and trematode parasites in a snail host (Helisoma anceps). Journal of Parasitology, 97, 788-791. DOI: 10.1645/GE-2733.1Web of ScienceCrossrefGoogle Scholar

  • Zimmermann M.R., Luth K.E., Esch G.W. 2014. Differences in snail ecology lead to infection pattern variation of Echinostoma spp. larval stages. Acta Parasitologica, 59, 502-509. DOI: 10.2478/s11686-014-0275-6 Web of ScienceCrossrefGoogle Scholar

About the article

Received: 2015-04-12

Revised: 2015-05-11

Accepted: 2015-05-25

Published Online: 2015-09-25

Published in Print: 2015-12-01


Citation Information: Acta Parasitologica, Volume 60, Issue 4, Pages 700–706, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0099.

Export Citation

W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael R. Zimmermann, Kyle E. Luth, and Gerald W. Esch
Acta Parasitologica, 2017, Volume 62, Number 3
[2]
Michael R. Zimmermann, Kyle E. Luth, and Gerald W. Esch
Journal of Parasitology, 2016, Volume 102, Number 3, Page 306

Comments (0)

Please log in or register to comment.
Log in