Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

See all formats and pricing
More options …
Volume 60, Issue 4


Production and preliminary evaluation of Trypanosoma evansi HSP70 for antibody detection in Equids

Jaideep Kumar
  • Research Scholar, Department of Bio & Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India
  • National Research Centre on Equines, Sirsa Road, Hisar-125001, Haryana, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ashok Chaudhury
  • Department of Bio & Nano Technology, Bio & Nano Technology Centre, Guru Jambheshwar University of Science and Technology, Hisar-125001, Haryana, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Bidhan C. Bera / Ritesh Kumar
  • Junior Research Fellow, National Research Centre on Equines, Sirsa Road, Hisar-125001, Haryana, India;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Rajender Kumar / Utpal Tatu / Suresh Chandra Yadav
Published Online: 2015-09-25 | DOI: https://doi.org/10.1515/ap-2015-0104


The present immuno-diagnostic method using soluble antigens from whole cell lysate antigen for trypanosomosis have certain inherent problems like lack of standardized and reproducible antigens, as well as ethical issues due to in vivo production, that could be alleviated by in vitro production. In the present study we have identified heat shock protein 70 (HSP70) from T. evansi proteome. The nucleotide sequence of T. evansi HSP70 was 2116 bp, which encodes 690 amino acid residues. The phylogenetic analysis of T. evansi HSP70 showed that T. evansi occurred within Trypanosoma clade and is most closely related to T. brucei brucei and T. brucei gambiense, whereas T. congolense HSP70 laid in separate clade. The two partial HSP70 sequences (HSP-1 from N-terminal region and HSP-2 from C-terminal region) were expressed and evaluated as diagnostic antigens using experimentally infected equine serum samples. Both recombinant proteins detected antibody in immunoblot using serum samples from experimental infected donkeys with T. evansi. Recombinant HSP-2 showed comparable antibody response to Whole cell lysate (WCL) antigen in immunoblot and ELISA. The initial results indicated that HSP70 has potential to detect the T. evansi infection and needs further validation on large set of equine serum samples.

Keywords: Trypanosoma evansi; Sero-prevalence; Recombinant heat shock protein 70; Phylogenetic tree; Immunoblot; ELISA


  • Agbo E.C., Majiwa P.A.O., Claassen E.J.H.M., Roos M.H. 2001. Measure of molecular diversity within the Trypanosoma brucei subspecies Trypanosoma brucei brucei and Trypanosoma brucei gambiense as revealed by genotypic characterisation. Experimental Parasitology, 99, 123-131Google Scholar

  • Bannai H., Sakurai T., Inoue N., Sugimoto C., Igarashi I. 2003. Cloning and expression of mitochondrial Heat Shock Protein 70 of Trypanosoma congolense and potential use as a diagnostic antigen. Clinical and Diagnostic Laboratory Immunology, 10, 926-933Google Scholar

  • Borst P., Fase-Fowler F., Gibson W.C. 1987. Kinetoplast DNA of Trypanosoma evansi. Molecular and Biochemical Parasitology, 23(1), 31-38CrossrefGoogle Scholar

  • Boulangé A., Katende J., Authié E. 2002. Trypanosoma congolense: expression of a heat shock protein 70 and initial evaluation as a diagnostic antigen for bovine trypanosomosis. Experimental Parasitology, 100, 6-11Google Scholar

  • Bradford M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248-254Google Scholar

  • Chansiri K., Kawazu S., Kamio T., Terada Y., Fujisaki K., Philippe H., Sarataphan N. 1999. Molecular phylogenetic studies on Theileria parasites based on small subunit ribosomal RNA gene sequences. Veterinary Parasitology, 83, 99-105Google Scholar

  • Desquesnes M., Holzmuller P., Lai D., Dargantes A., Lun Z.R., Jittaplapong S. 2013. Trypanosoma evansi and Surra: A Review and Perspectives on Origin, History, Distribution, Taxonomy, Morphology, Hosts, and Pathogenic Effects. BioMed Research International, Article ID 194176, http://dx.doi.org/10.1155/2013/194176CrossrefGoogle Scholar

  • Desquesnes M., Kamyingkird K., Pruvot M., Kengradomkij C., Bossard G., Sarataphan N., Jittapalapong S. 2009. Antibody- ELISA for Trypanosoma evansi: Application in a serological survey of dairy cattle, Thailand, and validation of a locally produced antigen. Preventive Veterinary Medicine, 90, 233-241 Web of ScienceGoogle Scholar

  • de Andrade C.R., Kirchhoff L.V., Donelson J.E., Otsu K. 1992. Recombinant Leishmania Hsp90 and Hsp70 Are Recognized by Sera from Visceral Leishmaniasis Patients but Not Chagas’ Disease Patients. Journal of Clinical Microbiology, 30(2), 330-335Google Scholar

  • Eisler M.C., Lessard P., Masake R.A., Moloo S.K., Peregrine A.S. 1998. Sensitivity and specificity of antigen-capture ELISAs for diagnosis of Trypanosoma congolense and Trypanosoma vivax infections in Cattle. Veterinary Parasitology, 79, 187-201Google Scholar

  • Greiner M., Bhat T.S., Patzelt R.J., Kakaire D., Schares G., Dietz E., Bohning D., Zessin K.H., Mehlitz D. 1997. Impact of biological factors on the interpretation of bovine trypanosomosis serology. Preventive Veterinary Medicine, 30, 61-73Google Scholar

  • Hamilton P.B., Adams E.R., Njiokou F., Gibson W.C., Cuny G. 2009. Herder S. Phylogenetic analysis reveals the presence of the Trypanosoma cruzi clade in African terrestrial mammals. Infection, Genetics and Evolution, 9, 81-86Web of ScienceGoogle Scholar

  • He L., Liu Q., Quan M., Zhou D., Zhou Y., Zhao J. 2009. Molecular cloning and phylogenetic analysis of Babesia orientalis heat shock protein 70. Veterinary Parasitology, 162, 183-91Web of ScienceGoogle Scholar

  • Kaufmann S.H.E. 1990. Heat-shock proteins: a missing link in the host-parasite relationship? Medical Microbiology and Immunology, 179, 61-66Google Scholar

  • Kumar R., Kumar S., Khurana S.K., Yadav S.C. 2013. Development of an antibody-ELISA for seroprevalence of Trypanosoma evansi in equids of North and North-western regions of India. Veterinary Parasitology, 196, 251-257Web of ScienceGoogle Scholar

  • Laemmli U.K. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature, 227, 680-685Google Scholar

  • Lai D., Hashimi H., Lun Z., Ayala F.J., Lukes J. 2008. Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proceedings of National Academy of Sciences USA, 105 (6), 1999-2004CrossrefWeb of ScienceGoogle Scholar

  • Lanham S.M., Godfrey D.G. 1970. Isolation of salivarian trypanosomes from man and other mammals using DEAE-cellulose. Experimental Parasitology, 28, 521-534Google Scholar

  • Lun Z., Desser S.S. 1995. Is the broad range of hosts and georgraphical distribution of Trypanosoma evansi attributable to the loss of maxicircle kinetoplast DNA? Parasitology Today, 11(4), 131-133CrossrefGoogle Scholar

  • Manful T., Mulindwa J., Frank F.M., Clayton C.E., Matovu E. 2010. A search for Trypanosoma brucei rhodesiense diagnostic antigens by proteomic screening and targeted cloning. PLoS ONE, 5, e9630. DOI: 10.1371/journal.pone.0009630CrossrefWeb of ScienceGoogle Scholar

  • Nantulya V.M., Lindqvist K.J. 1989. Antigen detection enzyme immunoassays for the diagnosis of Trypanosoma vivax, T. congolense and T. brucei infections in cattle. Tropical Medicine and Parasitology, 40, 156-161Google Scholar

  • Nei M., Kumar S. 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York Newport G., Culpepper J., Agabian N. 1988. Parasite heat-shock proteins. Parasitology Today, 4, 306Google Scholar

  • OIE terrestrial manual, chapter 2.1.17: http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.17_TRYPANO. pdf Google Scholar

  • Polla B.S. 1991. Heat shock proteins in host-parasite interactions. Immunololgy Today, 12, A38-41CrossrefGoogle Scholar

  • Rafati S., Gholami E., Hassani N., Ghaemimanesh F., Taslimi Y., Taheri T., Soong L. 2007. Leishmania major heat shock protein 70 (HSP70) is not protective in murine models of cutaneous leishmaniasis and stimulates strong humoral responses in cutaneous and visceral leishmaniasis patients. Vaccine, 25, 4159-4169Google Scholar

  • Ranjithkumar M., Saravanan B.C., Yadav S.C., Kumar R., Singh R., Malik T.A., Dey S. 2013. Neurological trypanosomiasis in quinapyramine sulfate-treated horses - A breach of the bloodbrain barrier? Tropical Animal Health and Production, 46, 371-377Web of ScienceGoogle Scholar

  • Retamal C.A., Thiebaut P., Alves E.W. 1999. Protein purification from polyacrylamide gels by sonication extraction. Analytical Biochemistry, 268, 15-20Google Scholar

  • Reyna-Bello A., Garcia F.A., Rivera M., Sanso B., Aso P.M. 1998. Enzyme-linked immunosorbent assay (ELISA) for detection of anti-Trypanosoma evansi equine antibodies. Veterinary Parasitology, 80, 149-57Web of ScienceGoogle Scholar

  • Rodrigues A., Fighera A., Souza T.M., Schild A.L., Barros,C.S.L. 2009. Neuropathology of Naturally Occurring Trypanosoma evansi Infection of Horses. Veterinary Pathology, 46, 251-258Google Scholar

  • Roy N., Nageshan R.K., Pallavi R., Chakravarthy H., Chandran S., Kumar R., Gupta A.K., Singh R.K., Yadav S.C., Tatu U. 2010. Proteomics of Trypanosoma evansi Infection in Rodents. PLoS ONE, 5(3), e9796. DOI: 10.1371/journal.pone.0009796Web of ScienceCrossrefGoogle Scholar

  • Sharma Y.D. 1992. Structure and possible function of heat-shock proteins in Falciparum malaria. Comparative Biochemistry and Physiology-B, 102(3), 437-444Google Scholar

  • Shinnick T.M. 1991. Heat shock proteins as antigens of bacterial and parasitic pathogens. Current Topics in Microbiology and Immunology, 167, 145-160Google Scholar

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739Web of ScienceGoogle Scholar

  • Woo P.T.K. 1977. 7-Salivarian trypanosomes producing disease in livestock outside of sub-saharan Africa. In: Julius Kreir (Ed.), Taxonomy Kinetoplastids and Flagellates of Fish. Academic Press, New York, pp. 269-96Google Scholar

  • Yadav S.C., Kumar R., Kumar S., Gupta, A.K. 2011. Identification and characterization of cysteine proteinases of Trypanosoma evansi. Parasitology Research, 109, 559-565Google Scholar

  • Yadav S.C., Kumar R., Kumar V., Jaideep, Kumar R., Gupta A.K., Bera B.C., Tatu U. 2013. Identification of immuno-dominant antigens of Trypanosoma evansi for detection of chronic trypanosomosis using experimentally infected equines. Research in Veterinary Science, 95, 522-528Web of ScienceGoogle Scholar

  • Zurita A.I., Rodriguez J., Pinero J.E., Pacheco R., Carmelo E., del Castllo A., Valladares B. 2003. Cloning and characterization of the Leishmania (Viannia) braziliensis Hsp70 gene. Diagnostic use of the C-terminal fragment rLb70 (513-663). Journal of Parasitology, 89, 372-378 Google Scholar

About the article

Received: 2014-12-27

Revised: 2015-03-16

Accepted: 2015-05-28

Published Online: 2015-09-25

Published in Print: 2015-12-01

Citation Information: Acta Parasitologica, Volume 60, Issue 4, Pages 727–734, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2015-0104.

Export Citation

W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Vikrant Sudan, Amit Kumar Jaiswal, and Daya Shanker
Comparative Clinical Pathology, 2017

Comments (0)

Please log in or register to comment.
Log in