Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 1 (Jan 2016)

Issues

Effects of altered water quality and trace elements on the infection variables of Paradiplozoon ichthyoxanthon (Monogenea: Diplozoidae) from two sites in the Vaal River system, South Africa

Beric Michael Gilbert
  • Department of Zoology, University of Johannesburg P.O. Box 524, Auckland Park, 2006 Johannesburg, South Africa
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Annemariè Avenant-Oldewage
  • Corresponding author
  • Department of Zoology, University of Johannesburg P.O. Box 524, Auckland Park, 2006 Johannesburg, South Africa
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/ap-2016-0005

Abstract

Using parasites as sentinel organisms has received increased attention due to their responses toward environmental degradation. In some sections of the Vaal River, South Africa, water quality is altered and biota distribution affected. The aims of this study were to assess and compare infection variables of Paradipolozoon ichthyoxanthonAvenant-Oldewage, 2014 in Avenant- Oldewage et al. (2014) at two sites along the Vaal River and compare the water quality and trace element levels at the sites. Infection variables of the parasite, physico-chemical variables, and sediment and water samples for trace element analysis were collected at each site. Conductivity and trace element concentrations were higher at the Vaal River site than the Vaal Dam. Temporal variances in water quality and parasite prevalence, mean intensity and mean abundance, at intervals over a 14 year period occurred, P. ichthyoxanthon was absent at the Vaal River site though the host fish are present. Prevalence peaks in summer and winter. Comparison of infection data to water quality and trace elements indicated that conductivity and trace element levels negatively affected/correlated with the infection variables. Higher trace elements concentration and conductivity at the Vaal River site are thought to be driving factors responsible for absence of the parasite.

Keywords : Temperature; infection biology; seasonality; Monogenea; bioindicators; parasites

References

  • Anderson R.M. 1974. An analysis of the influence of host morphometric features on the population dynamics of Diplozoon paradoxum (Nordmann, 1832). Journal of Animal Ecology, 43, 873-887CrossrefGoogle Scholar

  • Avenant-Oldewage A., le Roux L.E., Mashego S.N., Jansen van Vuuren B. 2014. Paradiplozoon ichthyoxanthon n. sp. (Monogenea: Diplozoidae) from Labeobarbus aeneus (Cyprinidae) in the Vaal River, South Africa. Journal of Helminthology, 88, 166-172. DOI: 10.1017/S0022149X12000879CrossrefGoogle Scholar

  • Bagge A.M., Valtonen E.T. 1996. Experimental study on the influence of paper and pulp mill effluent on gill parasite communities of roach (Rutilus rutilus). Parasitology, 112, 499-508. DOI: 10.1017/S0031182000076964CrossrefGoogle Scholar

  • Blanar C.A., Munkittrick K.R., Houlahan J., MacLatchy D.L., Marcogliese D.J. 2009. Pollution and parasitism in aquatic animals: A meta-analysis of effect size. Aquatic Toxicology, 93, 18-28. DOI: 10.1016/j.aquatox.2009.03.002CrossrefGoogle Scholar

  • Braune E., Rodgers K.H. 1987. The Vaal River catchment: Problems and research needs. South African National Scientific Programmes, Report No. 143. FRD/CSIR, Pretoria Google Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology, 83, 575-583Google Scholar

  • Chubb J.C. 1977. Seasonal occurrence of helminths in freshwater fishes Part 1. Monogenea. Advances in Parasitology, 15, 133-199Google Scholar

  • Crafford D., Avenant-Oldewage A. 2009. Application of a fish health assessment index and associated parasite index to Clarias gariepinus (Teleostei: Clariidae) in the Vaal River system, South Africa. African Journal of Aquatic Science, 34, 261-272. DOI: 10.2989/AJAS.2009.34.3.8.984CrossrefGoogle Scholar

  • Crafford D., Avenant-Oldewage A. 2010. Bioaccumulation of non-essential trace metals in tissues and organs of Clarias gariepinus (sharptooth catfish) from the Vaal River system - strontium, aluminium, lead and nickel. Water SA, 36, 621-640CrossrefGoogle Scholar

  • Crafford D., Avenant-Oldewage A. 2011. Uptake of selected metals in tissues and organs of Clarias gariepinus (sharptooth catfish) from the Vaal River System - Chromium, copper, iron, manganese and zinc. Water SA, 37, 181-200CrossrefGoogle Scholar

  • Crafford D., Luus-Powell W., Avenant-Oldewage A. 2012. Monogenean parasite species descriptions from Labeo spp. hosts in the Vaal Dam, South Africa. African Zoology, 47, 216-228CrossrefGoogle Scholar

  • Crafford D., Luus-Powell W., Avenant-Oldewage A. 2014. Monogenean parasites from fishes of the Vaal Dam, Gauteng Province, South Africa. I. Winter survey versus summer survey comparison from Labeo capensis (Smith, 1841) and Labeo umbratus (Smith, 1841) hosts. Acta Parasitologica, 59, 17-24. DOI: 10.2478/s11686-014-0205-7CrossrefGoogle Scholar

  • Cross M.A., Irwin S.W.B., Fitzpatrick S.M. 2002. Effects of heavy metal pollution on swimming and longevity in cercariae of Cryptocotyle lingua (Digenea: Heterophyidae). Parasitology, 123, 499-507. DOI: 10.1017/S0031182001008708CrossrefGoogle Scholar

  • Dušek L., Gelnar M., Šebelová. Š. 1998. Biodiversity of parasites in a freshwater environment with respect to pollution: metazoan parasites of chub (Leuciscus cephalus L.) as a model for statistical evaluation. International Journal for Parasitology, 28, 1555-1571CrossrefGoogle Scholar

  • Dzika E. 1987. Annual occurrence dynamics of common monogeneans on the gills of bream from the lake Gosławskie (Poland). Acta Parasitologica Polonica, 32, 121-137Google Scholar

  • Dzika E., Kuształa A., Kuształa M.. 2007. Parasites of carp bream, Abramis brama, from Lake Jamno, Poland. Helmithologia, 44, 222-225. DOI: 10.2478/s11687-007-0036-2CrossrefGoogle Scholar

  • Echi P.C., Ezenwaji H.M.G. 2009. The parasite fauna of characids’ (Osteichthyes: Characidae) Anambra River, Nigeria. African Journal of Ecology, 48, 1-4CrossrefGoogle Scholar

  • Fischer S.A., Kelso W.E. 1990. Parasite fauna development in juvenile bluegills and largemouth bass. Transactions of the American Fisheries Society, 199, 877-884. DOI: 10.1577/1548-8659(1990)119&It;0877:PFDIJB>2.3.CO;2CrossrefGoogle Scholar

  • Galli P., Crosa G., Mariniello L., Ortis M., D’Amelio S. 2001. Water quality as a determinant of the composition of fish parasite communities. Hydrobiologia, 452, 173-179Google Scholar

  • Gelnar M., Koubkova B., Pláňková H., Jurajda P. 1994. Report on metazoan parasites of fishes of the river Morava with remarks on the effects of water quality. Helminthologia, 31, 47-56Google Scholar

  • Gilbert B.M., Avenant-Oldewage A. 2014. Arsenic, chromium, copper, iron, manganese, lead, selenium and zinc in the tissues of the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913), from the Vaal Dam, South Africa, and associated consumption risks. Water SA, 40, 739-748Google Scholar

  • Gheorghiu C., Cable J., Marcogliese D.J., Scott M.E. 2007. Effects of waterborne zinc on reproduction, survival and morphometrics of Gyrodactylus turnbulli (Monogenea) on guppies (Poecilia reticulate). International Journal for Parasitology, 37, 375-381. DOI: 10.1016/j.ijpara.2006.09.004CrossrefGoogle Scholar

  • Gouws K., Coetzee P.P. 1997. Determination and partitioning of heavy metals in sediments of the Vaal Dam by sequential extraction. Water SA, 23, 217-226Google Scholar

  • Höglund J., Thulin J. 1989. Thermal effects on the seasonal dynamics of Paradiplozoon homoion (Bychowsky and Nagibina, 1959) parasitizing roach, Rutilus rutilus (L.). Journal of Helminthology, 63, 93-101. DOI: 10.1017/S0022149X0000883X CrossrefGoogle Scholar

  • Khan R.A., Thulin J. 1991. Influence of pollution on parasites of aquatic animals. Advances in Parasitology, 30, 200-237Google Scholar

  • Khan A.R., Chishti M.Z., Ahmad F., Rashid M., Bakshi S. 2004. Seasonal occurrence of helminth parasites in Schizothorax in Dal Lake Kashmir. Journal of Parasitic Disease, 28, 23-28Google Scholar

  • Koskivaara M., Valtonen E.T. 1991.Paradiplozoon homoion (Monogenea) and some other gill parasites on roach Rutilus rutilus in Finland. Aqua Fennica, 212, 137-143Google Scholar

  • Lafferty K.D. 1997. Environmental Parasitology: What can parasites tell us about human impacts on the environment? Parasitology Today, 13, 251-255Google Scholar

  • Milne S.J. 2007. Aspects of the biology of a Paradiplozoon species from the Vaal River. MSc Dissertation, the University of Johannesburg, Gauteng, South Africa.Google Scholar

  • Milne S.J., Avenant-Oldewage A. 2012. Seasonal growth of the attachment clamps of a Paradiplozoon sp. as depicted by statistical shape analysis. African Journal of Biotechnology, 11, 2333-2339. DOI: 10.5897/AJB11.3064CrossrefGoogle Scholar

  • Morley N.J., Costa H.H., Lewis J.W. 2010. Effects of chemically polluted discharge on the relationship between fecundity and parasitic infections in the chub (Leuciscus cephalus) from a river in Southern England. Archives of Environmental Contamination and Toxicology, 58, 783-792. DOI: 10.1007/s00244-009-9386-8CrossrefGoogle Scholar

  • Pečinková M., Matějusová I., Koubková B., Gelnar M. 2005. Classification and occurrence of abnormally developed Paradiplozoon homoion (Monogenea, Diplozoinae) parasitising gudgeon Gobio gobio. Diseases of Aquatic Organisms, 64, 63-68CrossrefGoogle Scholar

  • Pečinková M., Vøllestad L.A., Koubková B., Huml J., Jurajda P., Gelnar M. 2007. The relationship between developmental instability of gudgeon Gobio gobio and abundance or morphology of its ectoparasite Paradiplozoon homoion (Monogenea). Journal of Fish Biology, 71, 1358-1370. DOI: 10.1111/j.1095-8649. 2007.01599.x CrossrefGoogle Scholar

  • Pettersen R.A., Vollestad L.A., Flodmark L.E.W., Poleo A.B.S. 2006. Effects of aqueous aluminium on four fish ectoparasites. Science of the Total Environment, 369, 129-138. DOI: 10.1016/ j.scitotenv.2006.05.024CrossrefGoogle Scholar

  • Pheiffer W., Pieters R., van Dyk J.C., Smit N.J. 2014. Metal contamination of sediments and fish from the Vaal River, South Africa. Journal of Aquatic Science, 39, 117-121. DOI: 10.2989/16085914.2013.854732CrossrefGoogle Scholar

  • Poléo A.B.S., Schjolden J., Hansen H., Bakke T.A., Mo T.A., Rosseland B.O., Lyndersen E. 2004. The effects of various metals on Gyrodactylus salaris (Platyhelminthes, Monogenea) infections in Atlantic salmon (Salmo salar). Parasitology, 128, 169-177. DOI: 10.1017/S0031182003004396CrossrefGoogle Scholar

  • Poulin R. 1992. Determinants of host - specificity in parasites of freshwater fishes. International Journal of Parasitology, 22, 753-758CrossrefGoogle Scholar

  • Retief N.R., Avenant-Oldewage A., du Preez H. 2006. The use of cestode parasites from largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913) in the Vaal Dam, South Africa as indicators of heavy metal bioaccumulation. Physics and Chemistry of the Earth, 31, 840-847. DOI: 10.1016/j.pce.2006.08.004CrossrefGoogle Scholar

  • Retief N.-R., Avenant-Oldewage A., du Preez H.H. 2007. Ecological aspects of the occurrence of Asian tapeworm, Bothriocephalus acheilognathiYamaguti, 1934 infection in the largemouth yellowfish, Labeobarbus kimberleyensis (Gilchrist and Thompson, 1913) in the Vaal Dam. South Africa. Physics and Chemistry of the Earth, 32, 1384-1390. DOI: 10.1016/ j.pce.2007.07.044Google Scholar

  • Retief N.-R., Avenant-Oldewage A., du Preez H.H. 2009. Seasonal study on Bothriocephalus as indicator of metal pollution in yellowfish, South Africa. Water SA, 35, 315-322. Google Scholar

  • Šebelová Š., Kuperman B., Gelnar M. 2002. Abnormalities of the attachment clamps of representatives of the family Diplozoidae. Journal of Helminthology, 76, 249-259. DOI: 10.1079/JO H2002133CrossrefGoogle Scholar

  • Shah H.B., Yousuf A.R., Chishti M.Z., Ahmad F. 2013. Seasonal changes in infrapopulations of Diplozoon kashmirensis Kaw, 1950 (Monognenea: Diplozoidae) along a eutrophic gradient. Parasitology Research, 112, 3347-3356. DOI: 10.1007/s004 36-013-3514-0CrossrefGoogle Scholar

  • Soleng A., Poleo A.B.S., Bakke T.A. 2005. Toxicity of aqueous aluminium to the ectoparasitic monogenean Gyrodactylus salaris. Aquaculture, 250, 616-620. DOI: 10.1016/j.aquaculture. 2005.05.006CrossrefGoogle Scholar

  • Sures B. 2005. Effects of pollution on parasites, and use of parasites in pollution monitoring. In (Eds. Rhode K.) Marine Parasitology, CABI Publishing, United Kingdom, 421-425Google Scholar

  • Sures B. 2008. Host - parasite interactions in polluted environments. Journal of Fish Biology, 73, 2133-2142. DOI: 10.1111/j.10 95-8649.2008.02057.x CrossrefGoogle Scholar

  • Thulin J., Hoglund J., Lindesjoo E. 1988. Diseases and parasites of fish in a bleached kraft mill effluent. Water Science Technology, 20, 179-180Google Scholar

  • Valtonen E.T., Holmes J.C., Aronen J., Rautalahti I. 2003. Parasite communities as indicators of recovery from pollution: parasites of roach (Rutilus rutilus) and perch (Perca fluviatilis) in Central Finland. Parasitology, 126, S43-S52. DOI: 10.1017/ S0031182003003494 CrossrefGoogle Scholar

  • Wepener V., van Dyk C., Bervoets L., O’Brien G., Covaci A., Cloete Y. 2011. An assessment of the influence of multiple stressors on the Vaal River, South Africa. Physics and Chemistry of the Earth, 36, 949-962. DOI: 10.1016/j.pce.2011.07.075CrossrefGoogle Scholar

  • Zargar U.R., Chishti M.Z., Yousuf A.R., Fayaz A. 2012a. Infection level of monogenean gill parasite, Diplozoon kashmirensis (Monogenea, Polyopisthocotylea) in the Crucian Carp, Carassius carassius from lake ecosystems of an altered water quality: What factors do have an impact on the Diplozoon infection? Veterinary Parasitology, 189, 218-226. DOI: 10.1016/j.vetpar.2012.04.029CrossrefGoogle Scholar

  • Zargar U.R., Yousuf A.R., Chishti M.Z., Ahmed F., Bashir H., Ahmed F. 2012 b. Effects of water quality and trophic status on helminth infections in the cyprinid fish, Schizothorax niger Heckel, 1838 from three lakes in the Kashmir Himalayas. Journal of Helminthology, 86, 70-76. DOI: 10.1017/S002 2149X11000071CrossrefGoogle Scholar

  • Zharikova T.I. 1993. Effect of water pollution on ectoparasites of bream (Abramis brama). Journal of Ichthyology, 33, 73-83 Google Scholar

About the article

Received: 2015-02-03

Revised: 2015-06-18

Accepted: 2015-08-27

Published Online: 2015-12-30

Published in Print: 2016-01-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0005.

Export Citation

© 2016. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Vikas Pandey, Zeba Usmani, Avantika Chandra, Rohit Kumar Mishra, and Vipin Kumar
Chemistry and Ecology, 2017, Page 1
[2]
Beric Michael Gilbert and Annemariè Avenant-Oldewage
Environmental Science and Pollution Research, 2017, Volume 24, Number 23, Page 18742
[3]
Beric Gilbert, Ebrahim Hussain, Franz Jirsa, and Annemariè Avenant-Oldewage
International Journal of Environmental Research and Public Health, 2017, Volume 14, Number 7, Page 678
[4]
[5]
Bernd Sures, Milen Nachev, Christian Selbach, and David J. Marcogliese
Parasites & Vectors, 2017, Volume 10, Number 1

Comments (0)

Please log in or register to comment.
Log in