Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 61, Issue 1


Fourier transform infrared spectroscopy as a tool for identification of crude microbial extracts with anti-malarial potential

P. Sankarganesh
  • Corresponding author
  • Interdisciplinary Research Centre, Department of Biotechnology, Malankara Catholic College, Mariagiri-629153, Kanyakumari (Dt), Tamil Nadu State, India
  • School of Science, Department of Microbiology, Hindustan College of Arts & Science, Padur - 603103, Kanchipuram (Dt), Tamil Nadu State, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Baby Joseph
  • Interdisciplinary Research Centre, Department of Biotechnology, Malankara Catholic College, Mariagiri-629153, Kanyakumari (Dt), Tamil Nadu State, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/ap-2016-0012


Fourier transform infrared (FT-IR) spectroscopy is an indispensable tool for identifying biologically active functional groups in uncharacterized crude samples. Here, using FT-IR spectrum analysis, we identified crude extracts of Streptomyces that have anti-malarial activities and conducted a statistical analysis of their spectra. Among the three crude microbial extracts tested herein, an aromatic amine C-N stretching functional group was observed in the spectra of Streptomyces sp. BJSG1 and BJSG4 crude extracts. These extracts showed promising activity against Plasmodium falciparum in vitro cultures with IC50 values of 0.5 for BJSG1 and 0.4μg/mL for BJSG4. The present results showed that FT-IR analysis is necessary for the primary analysis of unknown samples in anti-malarial drug development.

Keywords : Vibration spectroscopy; anti-microbial activity; functional groups; Plasmodium falciparum; Streptomyces


  • Asokan B., Abdul A.R., Naveen K.K., Dinkar S. 2011. In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitology Research, 108, 15-22. DOI: 10.1007/s00436-010-2034-4CrossrefGoogle Scholar

  • Augustine S.K., Bhavsar S.P. Kapadnis B.P. 2005. A Non-Polyene antifungal antibiotic from Streptomyces albidoflavus PU 23. Journal of Biosciences, 30, 201-211Google Scholar

  • Baker M.J., Trevisan J., Bassan P., Bhargava R., Butler H.J., Dorling K.M., Fielden P.R., Fogarty S.W., Fullwood N.J., Heys K.A., Hughes C., Lasch P., Martin-Hirsch P.L., Obinaju B., Sockalingum G.D., Sule-Suso J., Strong R.J., Walsh M.J., Wood B.R., Gardner P., Martin F.L. 2014. Using Fourier transform IR spectroscopy to analyze biological materials. Nature Protocols 9, 1771-1791. DOI:10.1038/nprot.2014.110Web of ScienceCrossrefGoogle Scholar

  • Diao Y., Han H., Li Y., Zhou J., Yang, Z. 2013. Extraction, Infrared Spectral Analysis and the Antimicrobial Activity on Polysac- charide within Nostoc Commune Vauch. In: Proceedings of 2nd International Conference on Environment, Energy and Biotechnology, 51. IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2013CrossrefGoogle Scholar

  • Dilek D., Tulay B., Đlkay A., Kazım, Y. 2009. Fourier Transform Infrared (FT-IR) Spectroscopy for Biological Studies. Gazi University Journal of Science, 22, 117-121Google Scholar

  • Kamaraj C., Kaushik N.K., Mohanakrishnan D., Elango G., Bagavan A., Zahir A.A., Rahuman A.A., Sahal D. 2012. Antiplasmodial potential of medicinal plant extracts from Malaiyur and Javadhu hills of South India. Parasitology Research, 111, 703-15. DOI: 10.1007/s00436-011-2457-6Web of ScienceCrossrefGoogle Scholar

  • Kelly J.G., Trevisan J., Scott A.D., Carmichael P.L., Pollock H.M., Martin-Hirsch P.L., Martin F.L. 2011. Biospectroscopy to metabolically profile biomolecular structure: a multistage approach linking computational analysis with biomarkers Journal of Proteome Research, 10, 1437-1448CrossrefWeb of ScienceGoogle Scholar

  • Manish S., Deepak S., Aashish S.K., Gokula P.D. 2010. Synthesis and Biological Evaluation of Some New 1- 3-4-Oxadizole Derivatives. Journal of Current Pharmaceutical Research, 04, 18-21Google Scholar

  • Maobe M.A.G., Nyarango, R.M. 2013. Fourier Transformer Infra-Red Spectrophotometer Analysis of Urtica dioica Medicinal Herb Used for the Treatment of Diabetes, Malaria and Pneumonia in Kisii Region, Southwest Kenya. World Applied Sciences Journal, 21, 1128-1135. DOI: 10.5829/idosi.wasj.2013.21.8.2876CrossrefGoogle Scholar

  • Murugesan S., Swastika G., Giovanni M. 2010. Synthesis, evaluation and molecular modelling studies of some novel 3-(3,4- dihydroisoquinolin-2(1H)-yl)-N-(substituted phenyl) propanamides as HIV-1 non-nucleoside reverse transcriptase inhibitors. Journal of Chemical Sciences, 122, 169-176Web of ScienceGoogle Scholar

  • Nagalakshmi G., Maity T.K., Maiti B.C. 2011. Synthesis, characterization and antiproliferative activity of some novel 2-(Substitutedphenyl)-5-methyl-3-(Phenylamino)-1,3-Thiazolidin-4-O nes. Pharmacologyonline, 1, 1228-1246Google Scholar

  • Puviarasan N., Arjunan V., Mohan, S. 2004. FTIR and FT-Raman Spectral Investigations on 4-Aminoquinaldine and 5-Aminoquinoline. Turkish Journal of Chemistry, 28, 53 65Google Scholar

  • Trevisan, J., Angelov P.P., Carmichael P.L., Scottc A.D. and Martin F.L. 2012. Extracting biological information with computational analysis of Fourier-transform infrared (FTIR) biospectroscopy datasets: current practices to future perspectives. Analyst, 137, 3202-3215Google Scholar

  • Zhao H., Parry R.L., Ellis D.I., Griffith G.W., Goodacre, R. 2006. The rapid differentiation of Streptomyces isolates using Fourier transform infrared spectroscopy. Vibrational Spectroscopy, 40, 213-218. DOI: 10.1016/j.vibspec.2005.09.006CrossrefGoogle Scholar

  • Zhao H., Kassama Y., Young M., Kell D B., Goodacre R. 2004. Differentiation of Micromonospora Isolates from a Coastal Sediment in Wales on the Basis of Fourier Transform Infrared Spectroscopy, 16S rRNA Sequence Analysis, and the Amplified Fragment Length Polymorphism Technique. Applied and Environmental Microbiology, 70, 6619-6627. DOI:10.1128/ AEM.70.11.6619-6627.2004 CrossrefGoogle Scholar

About the article

Received: 2015-01-20

Revised: 2015-07-10

Accepted: 2015-09-17

Published Online: 2015-12-30

Published in Print: 2016-01-01

Citation Information: Acta Parasitologica, Volume 61, Issue 1, Pages 98–101, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0012.

Export Citation

© 2016.Get Permission

Comments (0)

Please log in or register to comment.
Log in