Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 61, Issue 1


A 43 kDa recombinant plasmepsin elicits immune response in mice against Plasmodium berghei malaria

Chhaya Pirta
  • Corresponding author
  • Laboratory of Parasitology and Immunology, Department of Biosciences, Himachal Pradesh University, Shimla-171005, India
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nitya Nand Sharma / H.S. Banyal
  • Laboratory of Parasitology and Immunology, Department of Biosciences, Himachal Pradesh University, Shimla-171005, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/ap-2016-0013


Intraerythrocytic parasites degrade haemoglobin to make available nutrients for their growth and maturation. Plasmepsins, the aspartic proteases of Plasmodium play a significant role in haemoglobin degradation and are proposed as attractive drug targets. In the present study the gene which encodes plasmepsin in rodent malaria parasite, Plasmodium berghei, was cloned and expressed. The gene was sequenced and expressed in Escherichia coli BL21DE3 and a recombinant plasmepsin of molecular weight 43 kDa was obtained. The sequence obtained was analysed and compared with plasmepsins of other Plasmodium spp. Mice immunized with the recombinant plasmepsin induced a strong humoral immune response. ELISA and IFA performed on the serum of immunized mice showed high antibody titres. Along with this, in vivo study exhibited partial protection against P. berghei infection suggesting role of plasmepsin in malaria control.

Keywords : Plasmodium berghei NK-65; malaria; aspartic proteases; plasmepsin; cloning; expression


  • Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215, 403-410Google Scholar

  • Banerjee R., Liu J., Beatty W., Pelosof L., Klemba M., Goldberg D. 2002. Four plasmepsins are active in the Plasmodium falciparum food vacuole, including a protease with an active-site histidine. Proceedings of National Academy of Sciences USA, 99, 990-995Google Scholar

  • Banyal H.S., Inselburg J. 1985. Isolation and characterization of parasite inhibitory Plasmodium falciparum monoclonal antibodies. American Journal of Tropical Medicine and Hygiene, 34, 1055-1064Google Scholar

  • Beck H.P. 2002. Extraction and purification of Plasmodium parasite DNA. Methods in Molecular Medicine, 72, 159-163Google Scholar

  • Carlton J.M., Angiuoli S.V., Suh B.B., Kooij T.W., Pertea M., Silva J.C., et al. 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature, 419, 512-519Google Scholar

  • Coombs G.H., Goldberg D.E., Klemba M., Berry C., Kay J., Mottram J.C. 2001. Aspartic proteases of Plasmodium falciparum and other parasitic protozoa as drug targets. Trends in Parasitology, 17, 532-537Google Scholar

  • Dame J.B., Yowell C.A., Omara-Opyene L., Carlton J.M., Cooper R.A., Li T. 2003. Plasmepsin 4, the food vacuole aspartic proteinase found in all Plasmodium spp. infecting man. Molecular and Biochemical Parasitology,130, 1-12Google Scholar

  • Gardner M.J., Hall N., Fung E., White O., Berriman M., Hyman R.W., et al. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature, 419, 498-511Google Scholar

  • Goldberg D.E., Andrew F.G.S., Ronald B., Brian C., Anthony C., Graeme, B.H. 1991. Hemoglobin degradation in the human malaria pathogen Plasmodium falciparum: A catabolic pathway initiated by a specific aspartic protease. The Journal of Experimental Medicine, 173, 961-969Google Scholar

  • Hall N., Karras M., Raine J.D., Carlton J.M., Kooij T.W., et al. 2005. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic, and proteomic analyses. Science, 307, 82-6Google Scholar

  • Humphreys M.J., Moon R.P., Klinder A., Fowler S.D., Rupp K., Bur D., et al. 1999. The aspartic proteinase from the rodent parasite Plasmodium berghei as a potential model for plasmepsins from the human malaria parasite, Plasmodium falciparum. FEBS Letters, 463, 43-48Google Scholar

  • Kamali A.N., Marin-Garcia P., Azcarate I.G., Diez A., Puyet A., Bautista J.M. 2012. Plasmodium yoelii blood-stage antigens newly identified by immunoaffinity using purified IgG antibodies from malaria-resistant mice. Immunobiology, 217, 823-830Web of ScienceGoogle Scholar

  • Klemba M., Goldberg D.E. 2005. Characterization of plasmepsin V, a membrane-bound aspartic protease homolog in the endoplasmic reticulum of Plasmodium falciparum. Molecular Biochemistry Parasitology, 143, 183-191Google Scholar

  • Liu J., Gluzman I.Y., Drew M.E., Goldberg D.E. 2005. The role of Plasmodium falciparum food vacuole plasmepsins. The Journal of Biological Chemistry, 280, 1432-1437Google Scholar

  • Loukas A., Bethony J.M., Mendez S., Fujiwara R.T., Goud G.N., Ranjit N., et al. 2005. Vaccination with recombinant aspartic hemoglobinase reduces parasite load and blood loss after hookworm infection. PLoS Medicine, 2:e295. DOI: 10.1371/ journal.pmed.0020295CrossrefGoogle Scholar

  • Moural P.A., Dame J.B., Fidock, D. A. 2009. Role of Plasmodium falciparum digestive vacuole plasmepsins in the specificity and antimalarial mode of action of cysteine and aspartic protease inhibitors. Antimicrobial. Agents and Chemotherapy, 53, 4968-4978 Web of ScienceGoogle Scholar

  • Pain A., Bohme U., Berry A.E., Mungall K., Finn R.D., Jackson A.P., et al. 2008The genome of the simian and human malaria parasite Plasmodium knowlesi. Nature, 455, 799-803Web of ScienceGoogle Scholar

  • Sharma S.K., Banyal H.S. 2009. γ-glutamylcysteine synthetase from Plasmodium berghei. Parasitology International, 58, 145-153Web of ScienceGoogle Scholar

  • Spaccapelo R., Janse C.J., Caterbi S., Franke-Fayard B., Bonilla J.A., Syphard L.M., et al. 2010. Plasmepsin 4-deficient Plasmodium berghei are virulence attenuated and induce protective immunity against experimental malaria. American Journal of Pathology, 176, 205-217Web of ScienceGoogle Scholar

  • Spaccapelo R., Aime E., Caterbi S., Arcidiacono P., Capuccini B., Cristina M.D., et al. 2011. Disruption of plasmepsin-4 and merozoites surface protein-7 genes in Plasmodium berghei induces combined virulence-attenuated phenotype. Scientific Reports, 1, 39 Web of ScienceGoogle Scholar

  • Verity C.K., McManus D.P., Brindley P.J. 2001. Vaccine efficacy of recombinant cathepsin D aspartic protease from Schistosoma japonicum. Parasite Immunology, 23, 153-62Google Scholar

  • Vilanova M., Teixeira L., Caramalho I., Torrado E., Marques A., Madureira P., et al. 2004. Protection against systemic candidiasis in mice immunized with secreted aspartic proteinase 2. Immunology, 111, 334-342Google Scholar

  • Xiao H., Sinkovits A.F., Bryksa B.C., Ogawa M., Yada R.Y. 2006. Recombinant expression and partial characterization of an active soluble histo-aspartic protease from Plasmodium falciparum. Protein Expression and Purification, 49, 88-94 Google Scholar

About the article

Received: 2014-05-25

Revised: 2015-07-12

Accepted: 2015-09-18

Published Online: 2015-12-30

Published in Print: 2016-01-01

Citation Information: Acta Parasitologica, Volume 61, Issue 1, Pages 102–107, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0013.

Export Citation

© 2016.Get Permission

Comments (0)

Please log in or register to comment.
Log in