Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 61, Issue 1


In search of a potential diagnostic tool for molecular characterization of lymphatic filariasis

Mohd Saeed
  • Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il, PO Box 2440, Kingdom of Saudi Arabia
  • Department of Biosciences, Integral University, Lucknow, Uttar Pradesh, 226026, India
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohd Adnan
  • Corresponding author
  • Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il, PO Box 2440, Kingdom of Saudi Arabia
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saif Khan
  • Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il, PO Box 2440, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eyad Al-Shammari
  • Department of Clinical Nutrition, College of Applied Medical Sciences, University of Ha’il, Ha’il, PO Box 2440, Kingdom of Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huma Mustafa
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/ap-2016-0015


Lymphatic filariasis (LF) is a chronic disease and is caused by the parasites Wuchereria bancrofti (W. bancrofti), Brugia malayi (B. malayi) and Brugia timori (B. timori). In the present study, Setaria cervi (S. cervi), a bovine filarial parasite has been used. Previously, it has been reported that the S. cervi shares some common proteins and antigenic determinants with that of human filarial parasite. The larval stages of filarial species usually cannot be identified by classical morphology. Hence, molecular characterization allows the identification of the parasites throughout all their developmental stages. The genomic DNA of S. cervi adult were isolated and estimated spectrophotometrically for the quantitative presence of DNA content. Screening of DNA sequences from filarial DNA GenBank and Expressed Sequence Tags (EST’s) were performed for homologous sequences and then multiple sequence alignment was executed. The conserved sequences from multiple sequence alignment were used for In Silico primer designing. The successfully designed primers were used further in PCR amplifications. Therefore, in search of a promising diagnostic tool few genes were identified to be conserved in the human and bovine filariasis and these novel primers deigned may help to develop a promising diagnostic tool for identification of lymphatic filariasis.

Keywords : Diagnostic tool; lymphatic filariasis; bovine filarial parasite; Setaria cervi


  • Alasaad S., Pascucci I., Jowers M.J., Soriguer R.C., Zhu X.Q., Rossi L. 2012. Phylogenetic study of Setaria cervi based on mitochondrial cox1 gene sequences. Parasitology Research, 110, 281-285Web of ScienceGoogle Scholar

  • Bockarie M.J., Molyneux D.H. 2009. The end of lymphatic filariasis? British Medical Journal (BMJ), 338, 1686Google Scholar

  • Braga C., Dourado M.I., Ximenes R.A.D.A., Alves L., Brayner F., Rocha A., Alexander N. 2003. Field evaluation of the whole blood immunochromatographic test for rapid bancroftian filariasis diagnosis in the northeast of Brazil. Revista do Instituto de Medicina Tropical de São Paulo, 45, 125-129Google Scholar

  • Cancrini G., Kramer L.H. 2001. Insect vectors of Dirofilaria spp. In: Simon F., Genchi C. (eds) Heartworm infection in humans and animals. Universidad de Salamanca, Spain, 63-82Google Scholar

  • Chu B.K., Hooper P.J., Bradley M.H., McFarland D.A., and Ottesen E.A. 2010.The economic benefits resulting from the first 8 years of the Global Programme to Eliminate Lymphatic Filariasis (2000-2007). PLoS Neglected Tropical Diseases, 4, 708Web of ScienceCrossrefGoogle Scholar

  • Cooper R.D. 1998 Preservation of anopheline mosquitoes for DNA probe analysis. Joumal of the American Mosquito Control Association, 14, 58-60Google Scholar

  • Dissanayake S., Piessens W.F. 1991. Detection of amplified Wuchereria bancrofti DNA in mosquitoes with a non-radioactive probe. Molecular and Biochemical Parasitology, 45, 49-56Google Scholar

  • Dixit V, Pati AK, Gupta AK, Bisen PS, Prasad GB. 2009. Filarial infection is resisted differentially by subjects having different blood group phenotypes. Journal of Clinical Laboratory Analysis, 23, 86-91. DOI: 10.1002/jcla.20317Web of ScienceCrossrefGoogle Scholar

  • Farid H.A., Hammad R.E., Hassan M.M., Morsy Z.S., Kamal I.H., Weil G.J., Ramzy R.M.R. 2001. Detection of Wuchereria bancrofti in mosquitoes by the polymerase chain reaction: a potentially useful tool for large scale control programmes. Transactions of the Royal Society of Tropical Medicine and Hygine, 95, 29-32Google Scholar

  • Favia G., Lanfrancotti A., Della Torre A., Cancrini G., Coluzzi M. 1997. Advances in the identification of Dirofilaria repens and Dirofilaria immitis by a PCR-based approach. Parassitologia, 39, 401-402Google Scholar

  • Ghedin E., Wang S., Spiro D., Caler E., Zhao Q., Crabtree J., Allen J.E., Delcher A.L., Guiliano D.B., Miranda-Saavedra D., Angiuoli S.V., Creasy T., Amedeo P., Haas B., El-Sayed N.M., Wortman J.R., Feldblyum T., Tallon L., Schatz M., Shumway M., Koo H., Salzberg S.L., Schobel S., Pertea M., Pop M., White O., Barton G.J., Carlow C.K., Crawford M.J., Daub J., Dimmic M.W., Estes C.F., Foster J.M., Ganatra M., Gregory W.F., Johnson N.M., Jin J., Komuniecki R., Korf I., Kumar S., Laney S., Li B.W., Li W., Lindblom T.H., Lustigman S., Ma D., Maina C.V., Martin D.M., McCarter J.P., McReynolds L., Mitreva M., Nutman T.B., Parkinson J., Peregrín-Alvarez J.M., Poole C., Ren Q., Saunders L., Sluder A.E., Smith K., Stanke M., Unnasch T.R., Ware J., Wei A.D., Weil G., Williams D.J., Zhang Y., Williams S.A., Fraser-Liggett C., Slatko B., Blaxter M.L., and Scott A.L. 2007. Draft genome of the filarial nematode parasite Brugia malayi. Science, 317, 1756-1760Web of ScienceGoogle Scholar

  • Hamlin K.L., Moss D.M., Priest J.W., Roberts J., Kubofcik J., Gass K., Lammie P. J. 2012. Longitudinal monitoring of the development of antifilarial antibodies and acquisition of Wuchereria bancrofti in a highly endemic area of Haiti. PLoS Neglected Tropical Diseases, 6, e1941CrossrefWeb of ScienceGoogle Scholar

  • Hedge E.C., Ridley D.S. 1977. Immunofluorescent reactions with microfilariae: 1. Diagnostic evaluation. Transactions of the Royal Society of Tropical Medicine and Hygine 71, 304Google Scholar

  • Kaushal N.A., Hussain R., Nash E., Ottesen E.A. 1982. Identification and characterization of excretory-secretory products of Brugia malayi, adult filarial parasites. The Journal of Immunology, 129, 338-343Google Scholar

  • Kolaczinski J. H., Onapa A. W., Kabatereine N. B., Ndyomugyenyi R., Kakembo A. S., Brooker S. 2006. Neglected tropical diseases and their control in uganda. Analysis, chapter 4, pp. 27-31Google Scholar

  • Koroma J. B., Bangura M. M., Hodges M. H., Bah M. S., Zhang Y., Bockarie M. J. 2012. Lymphatic filariasis mapping by Immunochromatographic Test cards and baseline microfilaria survey prior to mass drug administration in Sierra Leone. Parasites & Vectors, 5, 10 DOI: 10.1186/1756-3305-5-10CrossrefWeb of ScienceGoogle Scholar

  • Krushna N., Shiny C. 2009 Immunolocalization and serum antibody responses to Brugia malayi pepsin inhibitor homolog (B-33). Microbiology and Immunology, 53, 173-183Web of ScienceCrossrefGoogle Scholar

  • Kubofcik J., Fink D.L., Nutman T.B. 2012. Identification of Wb123 as an Early and Specific Marker of Wuchereria bancrofti Infection. PLoS Neglected Tropical Diseases, 6, e1930. DOI:10.1371/journal.pntd.0001930Web of ScienceCrossrefGoogle Scholar

  • Lizotte M.R., Supali T., Partono F. and Williams S.A. 1994. A polymerase chain reaction assay for the detection of Brugia malayi in blood. American Journal Tropical Medicine and Hygiene, 51, 314-21Google Scholar

  • Madathiparambil M.G., Kaleysa K.N., Raghavan K. 2009. A diagnostically useful 200-kDa protein is secreted through the surface pores of the filarial parasite Setaria digitata. Parasitology Research, 105, 1099-1104Web of ScienceGoogle Scholar

  • McCarthy J.S., Lustigman S., Yang G.J., Barakat R.M., Garcia H.H., Sripa B., Willingham A.L., Prichard R.K., Basáñez M.G. 2012.A research agenda for helminth diseases of humans: diagnostics for control and elimination programmes. PLoS Neglected Tropical Diseases, 6, 1601. DOI: 10.1371/journal. pntd.0001601Web of ScienceCrossrefGoogle Scholar

  • McCarthy J.S., Zhong M., Gopinath R. (1996). Evaluation of a polymerase chain reaction-based assay for diagnosis ofWuchereria bancrofti infection. Journal of Infectious Disease, 173, 1510-4Google Scholar

  • McReynolds L.A., DeSimone S.M., Williams S.A. 1986. Cloning and comparison of repeated DNA sequences from the human filarial parasite Brugia malayi and the animal parasite Brugia pahangi. Proceedings of the National Academic of Science, USA 83, 797-801CrossrefGoogle Scholar

  • Melrose W. 2004. Lymphatic filariasis: A review 1862-2002 (pp. 1-80). Warwick Educational Publishing Google Scholar

  • Molyneux D.H., Taylor M.J. 2001 Current status and future prospects of the Global Lymphatic Filariasis Programme. Current Opinion in Infectious Diseases, 14, 155-159CrossrefGoogle Scholar

  • Mustafa H., Srivastava N., Kaushal D.C., Kaushal, N. A. 1996. Analysis and potential of excretory-secretory antigens of Setaria cervi for immunodiagnosis of human filariasis. Indian Journal of Experimental Biology, 34, 508-512 Google Scholar

  • Nanduri J., Kazura J.W. (1989). Clinical and laboratory aspects of filariasis. Clinical Microbiology Reviews, 2, 39-50Web of ScienceGoogle Scholar

  • Paily K.P., Hoti S.L., Das P.K. 2009. A review of the complexity of biology of lymphatic filarial parasites. Journal of Parasitic Diseases, 33, 3-12Google Scholar

  • Pandiaraja P., Arunkumar C., Hoti S. 2010. Evaluation of synthetic peptides of WbSXP-1 for the diagnosis of human lymphatic filariasis. Diagnostic Microbiology and Infectious Disease, 68, 410-415Web of ScienceGoogle Scholar

  • Poole C.B., William, S.A. 1990. A rapid DNA assay for the speciesspecific detection and quantification of Brugia in blood sample. Molecular and Biochemical Parasitiology, 40, 129-36Google Scholar

  • Praphathip E., Phaik-Eem L., Hoi S.Y. 2013. The raffles bulletin of zoology 2013 Supplement No.29: 99-109 http://zoobank.org/urn:lsid:zoobank.org:pub:2EB147CA-0087-41D3-9312-FEDEF790E247Google Scholar

  • Rahman A.R., Hwen-Yee C., Noordin R. 2007. Pan LF-ELISA using BmR1 and BmSXP recombinant antigens for detection of lymphatic filariasis. Filaria Journal, 6, 10. DOI:10.1186/ 1475-2883-6-10Google Scholar

  • Siridewa K., Karunanayake E.H., Chandrasekharan N.V., Abeyewickreme W., Franzen L., Aslund L., Pettersson U. 1994. Cloning and characterization of a repetitive DNA sequence specific for Wuchereria bancrofti. The American Journal of Tropical Medicine and Hygiene, 51, 495-500Google Scholar

  • Srinivasan L., Mathew N., Muthuswamy K. 2009. In vitro antifilarial activity of glutathione S-transferase inhibitors. Parasitology Research, 105, 1179-1182Web of ScienceGoogle Scholar

  • Steel C., Kubofcik J., Ottesen E.A., Nutman T.B. 2012. Antibody to the Filarial Antigen Wb123 Reflects Reduced Transmission and Decreased Exposure in Children Born following Single Mass Drug Administration (MDA). PLoS Neglected Tropical Diseases, 6, e1940. DOI:10.1371/journal.pntd.0001940CrossrefWeb of ScienceGoogle Scholar

  • Thompson J.D., Gibson T.J., Higgins D.G. Multiple sequence alignment using ClustalW and Clustal X. Current Protocols in Bioinformatics. 2002; Chapter 2 (Unit 2 3).(chapter 4) Google Scholar

  • Walther M., Muller R. 2003. Diagnosis of human filariases (except onchocerciasis). Advances in parasitology, 53, 149-193CrossrefGoogle Scholar

  • Weil G., Curtis K., Fischer P., Won K. 2011.A multicenter evaluation of a new antibody test kit for lymphatic filariasis employing recombinant Brugia malayi antigen Bm-14. Acta Tropica, 120, 1-9. DOI:10.1016/j.actatropica.2010.04.010.A Web of ScienceCrossrefGoogle Scholar

  • WHO. 2014 Lymphatic filariasis Fact sheet Updated March 2014. (http://www.who.int/mediacentre/factsheets/fs102/en) Google Scholar

  • WHO. 2005. Sixth meeting of the Technical Advisory Group on the Global Elimination of Lymphatic Filariasis, Geneva, Switzerland, 20-23 September 2005. The Weekly Epidemiological Record, 80, 401-408Google Scholar

  • Williams S.A., DeSimone S.M., McReynolds L.A. 1988. Speciesspecific oligonucleotide probes for the identification of human filarial parasites. Molecular and Biochemical Parasitology, 28, 163-169CrossrefGoogle Scholar

  • Zhong, M., McCarthy, J.S., Bierwert, L., Lizotte-Waniewski M., Chanteau, S., Nutman T.B., Ottesen E. and Williams S.A. (1996). A polymerase chain reaction assay for detection of the parasite Wuchereria bancrofti in human blood samples. The American Journal of Tropical Medicine and Hygiene, 54, 357-63 Google Scholar

About the article

Received: 2014-04-13

Revised: 2015-07-09

Accepted: 2015-09-24

Published Online: 2015-12-30

Published in Print: 2016-01-01

Citation Information: Acta Parasitologica, Volume 61, Issue 1, Pages 113–118, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0015.

Export Citation

© 2016.Get Permission

Comments (0)

Please log in or register to comment.
Log in