Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

See all formats and pricing
More options …
Volume 61, Issue 1


Toxocara canis glycans influence antigen recognition by mouse IgG1 and IgM antibodies

Ewa Długosz
  • Corresponding author
  • Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Marcin Wiśniewski
  • Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences – SGGW, Ciszewskiego 8, 02-786 Warsaw, Poland
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2015-12-30 | DOI: https://doi.org/10.1515/ap-2016-0026


The impact of sugar moieties of Toxocara canis glycoprotein antigens on their recognition by infected mouse antibodies was investigated in this study. Native TES and recombinant Toxocara mucins generated in Pichia pastoris yeast as well as their deglycosylated forms were used in ELISA. TES and recombinant mucins were equally recognized by T. canis infected mouse IgG1 antibodies. IgM immunoglobulins predominantly recognized TES antigens. Among mucins recognition of Tc-MUC-4 was the most significant. Deglycosylation of antigens resulted in significant loss of IgM and IgG1 reactivity to TES, mucins, Tc-MUC-3 and Tc-MUC-4. The presence of sugar moieties had no influence on IgE binding to native or recombinant T. canis antigens. Our results suggest that glycans are involved in epitope formation what should be taken into consideration in production of recombinant helminth antigens for diagnostic purposes.

Keywords : Toxocara canis; glycoproteins; recombinant antigens; antibodies


  • Ahmad M., Hirz M., Pichler H., Schwab H. 2014. Protein expression in Pichia pastoris: recent achievements and perspectives for heterologous protein production. Applied Microbiology and Biotechnology, 98, 5301-5317. DOI 10.1007/s00253-014-5732-5CrossrefGoogle Scholar

  • Bąska P., Wiśniewski M., Krzyżowska M., Długosz E., Zygner W., Gorski P., Wędrychowicz H. 2013a. Molecular cloning and characterisation of in vitro immune response against astacinlike metalloprotease Ace-MTP-2 from Ancylostoma ceylanicum. Experimental Parasitology, 133, 472-482. DOI: 10.1016/ j.exppara.2013.01.006CrossrefWeb of ScienceGoogle Scholar

  • Bąska P., Zawistowska-Deniziak A., Zdziarska A.M.; Wasyl K., Wiśniewski M., Cywińska A., Klockiewicz M., Januszkiewicz K., Wędrychowicz H. 2013b. Fasciola hepatica - the pilot study of in vitro assessing immune response against native and recombinant antigens of the fluke. Acta Parasitologica, 58, 453-462. DOI: 10.2478/s11686-013-0163-5CrossrefWeb of ScienceGoogle Scholar

  • Coelho R.A.L., Carvalho Jr L.B., Perez E.P., Araki K., Takeuchi T., Ito A., Aoki T., Yamasaki H. 2005. Prevalence of toxocariasis in northeastern Brazil based on serology using recombinant Toxocara canis antigen. American Journal of Tropical Medicine and Hygiene, 72, 103-107Google Scholar

  • Długosz E., Wasyl K., Klockiewicz M., Wiśniewski M. 2015. Toxocara canis mucins among other excretory-secretory antigens induce in vitro secretion of cytokines by mouse splenocytes. Parasitology Research, 114, 3365-3371. DOI: 10.1007/ s00436-015-4561-5CrossrefWeb of ScienceGoogle Scholar

  • Doedens A., Loukas A., Maizels R.M. 2001. A cDNA encoding Tc-MUC-5, a mucin from Toxocara canis larvae identified by expression screening. Acta Tropica, 79, 211-217. DOI: 10.1016/S0001-706X(01)00137-1CrossrefGoogle Scholar

  • Fillaux J., Magnaval J.F. 2013. Laboratory diagnosis of human toxocariasis. Veterinary Parasitology, 193, 327-336. DOI: 10.1016/j.vetpar.2012.12.028CrossrefWeb of ScienceGoogle Scholar

  • Fong M.Y., Lau Y.L. 2004. Recombinant expression of the larval excretory- secretory antigen TES-120 of Toxocara canis in the methylotrophic yeast Pichia pastoris. Parasitology Research, 92, 173-176. DOI: 10.1007/s00436-003-1020-5CrossrefGoogle Scholar

  • Gawor J., Borecka A., Marczyńska M., Dobosz S., Żarnowska-Prymek H. 2015. Risk of human toxocariosis in Poland due to Toxocara infection of dogs and cats. Acta Parasitologica, 60, 99-104. DOI: 10.1515/ap-2015-0012Web of ScienceCrossrefGoogle Scholar

  • Gems D., Maizels R.M. 1996. An abundantly expressed mucin-like protein from Toxocara canis infective larvae: The precursor of the larval surface coat glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 93, 1665-1670Google Scholar

  • Gillespie S.H., Bidwell D., Voller A., Robertson B.D., Maizels R.M. 1993. Diagnosis of human toxocariasis by antigen capture enzyme linked immunosorbent assay. Journal of Clinical Pathology, 46, 551-554. DOI: 10.1136/jcp.46.6.551CrossrefGoogle Scholar

  • Hayashi E., Tuda J., Imada M., Akao N., Fujita K. 2005. The high prevalence of asymptomatic Toxocara infection among schoolchildren in Manado, Indonesia. Southeast Asian Journal of Tropical Medicine and Public Health, 36, 1399-1406Google Scholar

  • Jarosz W., Mizgajska-Wiktor H., Kirwan P., Konarski J., Rychlicki W., Wawrzyniak G. 2010. Developmental age, physical fitness and Toxocara seroprevalence amongst lower-secondary students living in rural areas contaminated with Toxocara eggs. Parasitology, 137, 53-63. DOI: 10.1017/S0031182009990874CrossrefWeb of ScienceGoogle Scholar

  • Koizumi A., Yamano K., Tsuchiya T., Schweizer F., Kiuchi F., Hada N. 2012. Synthesis, antigenicity against human sera and struc- ture-activity relationships of carbohydrate moieties from Toxocara larvae and their analogues. Molecules, 17, 9023-9042. DOI: 10.3390/molecules17089023Web of ScienceCrossrefGoogle Scholar

  • Loukas A., Hintz M., Linder D., Mullin N.P., Prkinson J., Tetteh K.K.A., Maizels R.M. 2000.A family of secreted mucins from the parasitic nematode Toxocara canis bears diverse mucin domains but shares similar flanking six-cysteine repeat motifs. The Journal of Biological Chemistry, 275, 39600-39607. DOI: 10.1074/jbc.M005632200CrossrefGoogle Scholar

  • Maizels R.M. 2013. Toxocara canis: Molecular basis of immune recognition and evasion. Veterinary Parasitology, 193, 365-374. DOI: 10.1016/j.vetpar.2012.12.032Web of ScienceCrossrefGoogle Scholar

  • Meghji M., Maizels R.M. 1986. Biochemical properties of larval excretory- secretory glycoproteins of the parasitic nematode Toxocara canis. Molecular and Biochemical Parasitology, 18, 155-170Google Scholar

  • Mohamad S., Azmi N.C., Noordin R. 2009. Development and evaluation of a sensitive and specific assay for diagnosis of human toxocariasis by use of three recombinant antigens (TES-26, TES-30USM, and TES-120). Journal of Clinical Microbiology, 47, 1712-1717. DOI: 10.1128/JCM.00001-09Web of ScienceCrossrefGoogle Scholar

  • Oaks J.A., Kayes S.G. 1979. Artificial hatching and culture of Toxocara canis second stage larvae. Journal of Parasitology, 65, 969-970Google Scholar

  • Rogé S., Van Reet N., Odiwuor S., Tran T., Schildermans K., Vandamme S., Vandenberghe I., Vervecken W., Gillingwater K., Claes F., Devreese B., Guisez Y., Buscher P. 2013. Recombinant expression of trypanosome surface glycoproteins in Pichia pastoris for the diagnosis of Trypanosoma evansi infection. Veterinary Parasitology, 197, 571-579. DOI: 10.1016/j.vetpar.2013.05.009Web of ScienceCrossrefGoogle Scholar

  • Schabussova I., Amer H., van Die I., Kosma P., Maizels R.M. 2007. O-methylated glycans from Toxocara are specific targets for antibody binding in human and animal infections. International Journal for Prasitology, 37, 97-109. DOI: 10.1016/j.ijpara. 2006.09.006CrossrefGoogle Scholar

  • Smith H., Holland C., Taylor M., Magnaval J.F., Schantz P., Maizels R.M. 2009. How common is human toxocariasis? Towards standardizing our knowledge. Trends in Parasitology, 25, 182-188. DOI: 10.1016/j.pt.2009.01.006Web of ScienceCrossrefGoogle Scholar

  • Tawill S., Le Goff L., Ali F., Blaxter M., Allen J.E. 2004. Both freeliving and parasitic nematodes induce a characteristic Th2 response that is dependent on the presence of intact glycans. Infection and Immunity, 72, 398-407. DOI: 10.1128/IAI. 72.1.398-407.2004CrossrefGoogle Scholar

  • Won K.Y., Kruszon-Moran D., Schantz P.M., Jones J.L. 2008. National seroprevalence and risk factors for zoonotic Toxocara spp. infection. American Journal of Tropical Medicine and Hygiene, 79, 552-557Google Scholar

  • Yamasaki H., Araki K., Lim P.K.C, Zasmy N., Mak J.W., Taib R., Aoki T. 2000. Development of a highly specific recombinant Toxocara canis second-stage larva excretory-secretory antigen for immunodiagnosis of human toxocariasis. Journal of Clinical Microbiology, 38, 1409-1413Google Scholar

  • Zawistowska-Deniziak A., Wasyl K., Norbury L.J., Wesołowska A., Bień J., Grodzik M., Wiśniewski M., Bąska P., Wędrychowicz H. 2013. Characterization and differential expression of cathepsin L3 alleles from Fasciola hepatica. Molecular and Biochemical Parasitology, 190, 27-37. DOI: 10.1016/j.molbiopara. 2013.06.001 CrossrefGoogle Scholar

About the article

Received: 2015-01-09

Revised: 2015-06-18

Accepted: 2015-08-28

Published Online: 2015-12-30

Published in Print: 2016-01-01

Citation Information: Acta Parasitologica, Volume 61, Issue 1, Pages 191–194, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0026.

Export Citation

© 2016. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

W. H. Roldán, G. R. Elefant, and A. W. Ferreira
Parasite Immunology, 2017, Volume 39, Number 8, Page e12447

Comments (0)

Please log in or register to comment.
Log in