Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 61, Issue 2


Wild boar (Sus scrofa) – reservoir host of Toxoplasma gondii, Neospora caninum and Anaplasma phagocytophilum in Slovakia

Katarína Reiterová
  • Corresponding author
  • Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Silvia Špilovská
  • Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lucia Blaňarová
  • Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Markéta Derdáková
  • Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06 Bratislava, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Andrea Čobádiová
  • Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Vladimír Hisira
  • University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 041 81 Košice, Slovak Republic
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-30 | DOI: https://doi.org/10.1515/ap-2016-0035


In Central Europe the wild boar population is permanently growing and consequently Cf foodborne infections. In this study serological and molecular detection of Toxoplasma gondii and Neospora caninum in wild boars was evaluated. Moreover, same samples were screened for the presence and genetic variability of tick-borne bacterium Anaplasma phagocytophilum. Blood samples collected from 113 wild boars from Southern Slovakia were examined for antibodies to T. gondii by indirect and to N. caninum by competitive ELISA. The presence of parasitic DNA in blood samples was determined by standard or real time PCR techniques. Antibodies against T. gondii and N. caninum were detected in 45 (39.8%) and 38 (33.6%) animals, respectively. Females were more frequently infected for both pathogens than males. The high seropositivity against both coccidia indicates a permanent occurrence of these pathogens in the studied locality. T. gondii DNA was confirmed in five seropositive boars (4.4%) and N. caninum in 23 blood samples (20.4%). Three out of 23 N. caninum PCR positive animals did not show seropositivity. Three out of 113 blood samples of wild boars were positive for A. phagocytophilum (2.7%). The obtained A. phagocytophilum sequences were 100% identical with GenBankTM isolates from Slovak dog (KC985242); German horse (JF893938) or wild boar (EF143810) and red deer (EF143808) from Poland. Coinfections of T. gondii with N. caninum and N. caninum with A. phagocytophilum were detected in single cases. Results suggest a potential zoonotic risk of toxoplasmosis transmission to humans and the spread of neosporosis to farm animals.

Key words: Toxoplasmosis; neosporosis; anaplasmosis; Sus scrofa; serological survey; PCR


  • Almería S., Vidal D., Ferrer D., Pabón M., Fernández de Mera M.I., Ruiz-Fons F., Alzaga V., Marco I., Calvete C., Lavin S., Gortazar C., López-Gatius F., Dubey J.P. 2007. Seroprevalence of Neospora caninum in non-carnivorous wildlife from Spain. Veterinary Parasitology, 143, 21–28. DOI:10.1016/j.vetpar.2006.07.027Web of ScienceCrossrefGoogle Scholar

  • Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402Google Scholar

  • Antolová D., Reiterová K., Dubinský P. 2007. Seroprevalence of Toxoplasma gondii in wild boars (Sus scrofa) in the Slovak Republic. Annals of Agricultural and Environmental Medicine, 14, 71–73Google Scholar

  • Bártová E., Sedlák K., Literák I. 2006. Prevalence of Toxoplasma gondii and Neospora caninum antibodies in wild boars in the Czech Republic. Veterinary Parasitology, 142, 150–153. DOI: 10.1016/j.vetpar.2006.06.022CrossrefGoogle Scholar

  • Beral M., Rossi S., Aubert D., Gasqui P., Terrier M.E., Klein F., Villena I., Abrial D., Gilot-Fromont E., Richomme C., Hars J., Jourdain E. 2012. Environmental factors associated with the seroprevalence of Toxoplasma gondii in wild boars (Sus scrofa), France. EcoHealth 9, 303–309. DOI: 10.1007/s10393-012-0786-2CrossrefWeb of ScienceGoogle Scholar

  • Closa-Sebastià F., Casas-Díaz E., Cuenca R., Lavín S., Mentaberre G., Marco I., 2011. Antibodies to selected pathogens in wild boar (Sus scrofa) from Catalonia (NE Spain). European Journal of Wildlife Research, 57, 977–981. DOI: 10.1007/s10344010-0491-9Web of ScienceCrossrefGoogle Scholar

  • Courtney J.W., Kostelnik L.M., Zeidner N.S., Massung R.F. 2004. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. Journal of Clinical Microbiology, 42, 3164–3168. DOI: 10.1128/JCM.42.7.31643168.2004CrossrefGoogle Scholar

  • Deksne G., Kirjušina M. 2013. Seroprevalence of Toxoplasma gondii in domestic pigs (Sus scrofa domestica) and wild boars (Sus scrofa) in Latvia. Journal of Parasitology, 99, 44–47. DOI: http://dx.doi.org/10.1645/GE-3187.1Google Scholar

  • Dubey J.P. 2003. Review of Neospora caninum and neosporosis in animals. Korean Journal of Parasitology, 41, 1–16Google Scholar

  • Dubey J.P. 2009. Toxoplasmosis in man (Homo sapiens). In: Toxoplasmosis of animals and humans. (Sec. Eds.), CRC Press Inc. Florida, USA, pp. 313Google Scholar

  • Ferroglio E., Bosio F., Trisciuoglio A., Zanet S. 2014. Toxoplasma gondii in sympatric wild herbivores and carnivores: epidemiology of infection in the Western Alps. Parasites & Vectors, 7, 196. http://www.parasitesandvectors.com/content/7/1/196Web of ScienceGoogle Scholar

  • Galindo R.C., Ayllón N., Smrdel K.S., Boadella M., Beltrán-Beck B., Mazariegos M., Garcia, N., de la Lastra J.M., Avsic-Zupanc T., Kocan K.M., Gortazar C., de la Fuente J. 2012. Gene expression profile suggests that pigs (Sus scrofa) are susceptible to Anaplasma phagocytophilum but control infection. Parasites & Vectors, 30, 181. DOI:10.1186/17563305-5-181CrossrefGoogle Scholar

  • Graham P., Bull B. 1998. Approximate standard errors and confidence intervals for indices of positive and negative agreement. Journal of Clinical Epidemiology, 51, 763–771. DOI: 10.1016/S0895-4356(98)00048-1CrossrefGoogle Scholar

  • Humair P.F., Douet V., Morán Cadenas F., Schouls L.M., Van De Pol I., Gern L. 2007. Molecular identification of bloodmeal source in Ixodes ricinus ticks using12S rDNA as a genetic marker. Journal of Medical Entomology, 44, 869–880.DOI: http://dx.doi.org/10.1093/jmedent/44.5.869Google Scholar

  • Laddomada A. 2000. Incidence and control of CSF in wild boar in Europe. Veterinary Microbiology, 73, 121–130. DOI: 10.1016/S0378-1135(00)00139-5CrossrefGoogle Scholar

  • Lamoril J., Molina M.J., Gouvello A., Garin J.Y., Deybach C.J. 1996. Detection by PCR of Toxoplasma gondii in blood in the diagnosis of cerebral toxoplasmosis in patients with AIDS. Journal of Clinical Pathology, 49, 89–92. DOI:10.1136/jcp.49.1.89CrossrefGoogle Scholar

  • Liz, J.S., Sumner, J.W., Pfister, K., Brossard, M. 2002. PCR detection and serologicalevidence of granulocytic ehrlichial infection in roe deer (Capreolus capreolus) and chamois (Rupicapra rupicapra). Journal of Clinical Microbiology, 40, 892–897. DOI: 10.1128/JCM.40.3.892-897.2002CrossrefGoogle Scholar

  • Luptáková L., Bálent P., Valenčáková A., Hisira V., Petrovová, E. 2010. Detection of Toxoplasma gondii and Encephalitozoon spp. in wild boars by serological and molecular methods. Revue De Medecine Veterinaire, 161, 599–563Google Scholar

  • Massung R.F., Slater K., Owens J.H., Nicholson W.L., Mather T.N., Solberg V.B., Olson J.G. 1998. Nested PCR assay for detection of granulocytic ehrlichiae. Journal of Clinical Microbiology, 36, 1090–1095Google Scholar

  • McCann C.M., Vyse A.J., Salmon R.L., Thomas D., Williams D.J.L., McGarry J.W., Pebody, R., Trees A.J. 2008. Lack of serologic evidence of Neospora caninum in humans, England. Emerging Infectious Diseases, 14, 978–980.DOI: 10.3201/eid1406.071128CrossrefGoogle Scholar

  • Michalik J., Stańczak J., Cieniuch S., Racewicz M., Sikora B., Dabert M. 2012. Wild boars as hosts of human-pathogenic Anaplasma phagocytophilum, variants. Emerging Infectious Diseases, 18, 998–1001.DOI: http://dx.doi.org/10.3201/eid1806.110997Google Scholar

  • Pastiu A.I., Györke A., Blaga R., Mircean V., Rosenthal B.M., Cozma V. 2013. In Romania, exposure to Toxoplasma gondii occurs twice as often in swine raised for familial consumption as in hunted wild boar, but occurs rarely, if ever, among fattening pigs raised in confinement. Parasitology Research, 112, 2403–2407. DOI: 10.1007/s00436-013-3553-zWeb of ScienceCrossrefGoogle Scholar

  • Petrovec M., Sixl W., Schweiger R., Mikulasek S., Elke L., Wüst, G., Marth E., Strašek K., Stünzner, D.O., Avsic-Zupanc T. 2003. Infections of wild animals with Anaplasma phagocytophila in Austria and the Czech Republic. Annals of the New York Academy of Sciences, 990, 103–106. DOI: 10.1111/j.17496632.2003.tb07345.xCrossrefGoogle Scholar

  • Račka K. Bártová E., Budíková M., Vodrážka P. 2015. Survey of Toxoplasma gondii antibodies in meat juice of wild boar (Sus scrofa) in several districts of the Czech Republic. Annals of Agricultural and Environmental Medicine, 22, 231–5. DOI: 10.5604/12321966.1152071CrossrefGoogle Scholar

  • Reiterová K., Špilovská S., Čobádiová A., Mucha R. 2011. First in vitro isolation of Neospora caninum from a naturally infected adult dairy cow in Slovakia. Acta Parasitologica, 56, 111–115. DOI: 10.2478/s11686-011-0019-9CrossrefWeb of ScienceGoogle Scholar

  • Schley L., Roper T.J. 2003. Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mammal Review 33, 43–56Google Scholar

  • Schlüter D., Däubener W., Schares G., Groß U., Pleyer U., Lüder C. 2014. Animals are key to human toxoplasmosis. International Journal of Medical Microbiology, 304, pp. 917–929. DOI: 10.1016/j.ijmm.2014.09.002CrossrefGoogle Scholar

  • Silaghi C., Pfister K., Overzier E. 2014. Molecular investigation for bacterial and protozoan tick-borne pathogens in wild boars (Sus scrofa) from Southern Germany. Vector Borne Zoonotic Diseases, 14, 371–373. DOI:10.1089/vbz.2013.1495CrossrefGoogle Scholar

  • Strasek Smrdel K, Bidovec A, Malovrh T, Petrovec M, Duh D, Avsic Zupanc T. 2009. Detection of Anaplasma phagocytophilum in wild boar in Slovenia. Clinical Microbiology and Infection, 15 (Suppl 2), 50–52. DOI:10.1111/j.1469-691.2008.02174.xCrossrefGoogle Scholar

  • Stuen S. 2007. Anaplasma phagocytophilum – the most widespread tick-borne infection in animals in Europe. Veterinary Research Communications, 31, 79–84. DOI: 10.1007/s11259007-0071-yCrossrefGoogle Scholar

  • Špilovská S., Reiterová K., Hisira V. 2008. Serological monitoring of neosporosis in wild boars from selected localities of Slovakia. Infovet, 15, 222–223 (In Slovak)Google Scholar

  • Tenter A.M., Heckeroth A.R., Weiss L.M. 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, 30, 1217–1258. DOI: 10.1016/S0020-7519(00)00124-7CrossrefGoogle Scholar

  • Williams D.J., Hartley C.S., Björkman C, Trees A.J. 2009. Endogenous and exogenous transplacental transmission of Neospora caninum – how the route of transmission impacts on epidemiology and control of disease. Parasitology, 136, 1895– 1900. DOI: http://dx.doi.org/10.1017/S0031182009990588Web of ScienceGoogle Scholar

  • Witkowski L., Czopowicz M., Nagy D.A., Potarniche A.V., Aoanei M.A., Imomov N., Mickiewicz M., Welz M., Szaluś-Jordanow O., Kaba J. 2015. Seroprevalence of Toxoplasma gondii in wild boars, red deer and roe deer in Poland. Parasite, 22, 17. DOI: 10.1051/parasite/2015017CrossrefGoogle Scholar

  • Yamage M., Flechtner O., Gottstein B. 1996. Neospora caninum: specific oligonucleotide primers for the detection of brain cyst DNA of experimentally infected nude mice by the polymerase chain reaction (PCR). International Journal for Parasitology, 82, 272–279. DOI: 10.2307/3284160CrossrefGoogle Scholar

About the article

Received: 2015-10-16

Revised: 2015-11-27

Accepted: 2015-12-01

Published Online: 2016-03-30

Published in Print: 2016-06-01

Citation Information: Acta Parasitologica, Volume 61, Issue 2, Pages 255–260, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0035.

Export Citation

© W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Maria Fredriksson-Ahomaa
Foodborne Pathogens and Disease, 2018
Bronislava Víchová, Martin Bona, Martina Miterpáková, Jasna Kraljik, Viktória Čabanová, Gabriela Nemčíková, Zuzana Hurníková, and Martin Oravec
Vector-Borne and Zoonotic Diseases, 2018
Alessia Libera Gazzonis, Luca Villa, Katharina Riehn, Ahmad Hamedy, Stefano Minazzi, Emanuela Olivieri, Sergio Aurelio Zanzani, and Maria Teresa Manfredi
Parasitology Research, 2018
Ali Rostami, Seyed Mohammad Riahi, Yadollah Fakhri, Vafa Saber, Hooman Hanifehpour, Soghra Valizadeh, Majid Gholizadeh, Rokhsane Hosseini Pouya, and H.Ray Gamble
Veterinary Parasitology, 2017, Volume 244, Page 12
Michal Slany, Nikol Reslova, Vladimir Babak, and Alena Lorencova
International Journal of Food Microbiology, 2016, Volume 238, Page 252

Comments (0)

Please log in or register to comment.
Log in