Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 2 (Jun 2016)

Issues

CIAS detection of Fasciola hepatica/F. gigantica intermediate forms in bovines from Bangladesh

Syed Ali Ahasan
  • Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
  • Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ M. Adela Valero
  • Corresponding author
  • Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Emdadul Haque Chowdhury
  • Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Taohidul Islam
  • Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Rafiqul Islam
  • Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Mohammad Motahar Hussain Mondal
  • Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Raquel V. Peixoto
  • Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lavinia Berinde
  • Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
  • Department of Microbiology, University of Medicine and Pharmacy "Iuliu Hatieganu", Louis Pasteur street No. 6, Cluj-Napoca 400394, Romania
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Miroslava Panova
  • Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Santiago Mas-Coma
  • Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100 Burjassot, Valencia, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-30 | DOI: https://doi.org/10.1515/ap-2016-0037

Abstract

Fascioliasis is an important food-borne parasitic zoonosis caused by two trematode species, Fasciola hepatica and Fasciola gigantica. The characterisation and differentiation of Fasciola populations is crucial to control the disease, given the different transmission, epidemiology and pathology characteristics of the two species. Lineal biometric features of adult liver flukes infecting livestock have been studied to characterise and discriminate fasciolids from Bangladesh. An accurate analysis was conducted to phenotypically discriminate between fasciolids from naturally infected bovines (cattle, buffaloes) throughout the country. Morphometric analyses were made with a computer image analysis system (CIAS) applied on the basis of standardised measurements and the logistic model of the body growth and development of fasciolids in the different host groups. Since it is the first ever comprehensive study of this kind undertaken in Bangladesh, the results are compared to pure fasciolid populations of F. hepatica from the European Mediterranean area and F. gigantica from Burkina Faso, geographical areas where both species do not co-exist. Principal component analysis showed that the biometric characteristics of fasciolids from Bangladesh are situated between F. hepatica and F. gigantica standard populations, indicating the presence of phenotypes of intermediate forms in Bangladesh. These results are analysed by considering the present emergence of animal fascioliasis, the local lymnaeid fauna, the impact of climate change, and the risk of human infection in the country.

Key words: Fasciola hepatica; Fasciola gigantica; forms; multivariate analysis; CIAS; Bangladesh

References

  • Afshan K., Valero M.A., Qayyum M., Peixoto R.V., Magraner A., Mas-Coma S. 2013. Phenotypes of intermediate forms of Fasciola hepatica and F. gigantica in buffaloes from Central Punjab, Journal of Helminthology, 88, 417–426. DOI: 10.1017/S0022149X13000369CrossrefGoogle Scholar

  • Afshan K., Fortes-Lima C.A., Artigas P., Valero M.A., Qayyum M., Mas-Coma S. 2014. Impact of climate change and man-made irrigation systems on the transmission risk, long-term trend and seasonality of human and animal fascioliasis in Pakistan. Geospatial Health, 8, 317–334Google Scholar

  • Artigas P., Bargues M.D., Mera y Sierra R., Agramunt V.H., Mas-Coma S. 2011. Characterisation of fascioliasis lymnaeid intermediate hosts from Chile by DNA sequencing, with emphasis on Lymnaea viator and Galba truncatula. Acta Tropica, 120, 245–257. DOI: 10.1016/j.actatropica.2011.09.002CrossrefGoogle Scholar

  • Ashrafi K., Valero M.A., Panova M., Periago M.V., Massoud J., Mas-Coma S. 2006. Phenotypic analysis of adults of Fasciola hepaticaFasciola gigantica and intermediate forms from the endemic region of Guilan, Iran. Parasitology International, 55, 249–260Google Scholar

  • Ashrafi K., Valero M.A., Peixoto R.V., Artigas P., Panova M., Mas-Coma S. 2015. Distribution of Fasciola hepatica and F. gigantica in the endemic area of Guilan, Iran: Relationships between zonal overlap and phenotypic traits. InfectionGenetics and Evolution, 31, 95–109. DOI: 10.1016/j.meegid.2015.01.009CrossrefGoogle Scholar

  • Bangladesh Academy of Science (BAS)-USDA, 2012. Annual Project Report of LS 07/2011 project, Mondal MMH, Bangladesh Agricultural University, MymensinghGoogle Scholar

  • Bargues M.D., Mas-Coma S. 2005. Reviewing lymnaeid vectors of fascioliasis by ribosomal DNA sequence analyses. Journal of Helminthology, 79, 257–267Google Scholar

  • Bargues M.D., Artigas P., Mera y Sierra R.L., Pointier J.P., Mas-Coma S., 2007. Characterisation of Lymnaea cubensisL. viatrix and L. neotropica n. sp., the main vectors of Fasciola hepatica in Latin America, by analysis of their ribosomal and mitochondrial DNA. Annals of Tropical Medicine and Parasitology, 101, 621–641Google Scholar

  • Bargues M.D., Artigas P., Khoubbane M., Flores R., Glöer P., Rojas-García R., Ashrafi K., Falkner G., Mas-Coma S. 2011a. Lymnaea schirazensis, an overlooked snail distorting fascioliasis data: genotype, phenotype, ecology, worldwide spread, susceptibility, applicability. PLoS ONE, 6, e24567, pp. 33 + 3 Suppl. Tables + 5 Suppl. Figures). DOI: 10.1371/journal. pone.0024567Google Scholar

  • Bargues M.D., Gonzalez C., Artigas P., Mas-Coma S. 2011b. A new baseline for fascioliasis in Venezuela: lymnaeid vectors ascertained by DNA sequencing and analysis of their relationships with human and animal infection. Parasites & Vectors, 4, 200, pp. 18. DOI: 10.1186/1756-3305-4-200CrossrefGoogle Scholar

  • Bargues M.D., Artigas P., Khoubbane M., Mas-Coma S. 2011c. DNA sequence characterisation and phylogeography of Lymnaea cousini and related species, vectors of fascioliasis in northern Andean countries, with description of L. meridensis n. sp. (Gastropoda: Lymnaeidae). Parasites & Vectors, 4, 132, pp. 22. DOI: 10.1186/1756-3305-4-132CrossrefGoogle Scholar

  • Bargues M.D., Artigas P., Khoubbane M., Ortiz P., Naquira C., Mas-Coma S. 2012. Molecular characterisation of Galba truncatulaLymnaea neotropica and L. schirazensis from Cajamarca, Peru and their potential role in transmission of human and animal fascioliasis. Parasites & Vectors, 5, 174, pp. 16. DOI: 10.1186/1756-3305-5-174CrossrefGoogle Scholar

  • Bhuiyan M.A. 1970. A survey of helminth parasitizing the liver of domesticated ruminants in East Pakistan. M.Sc. Thesis, Department of Parasitology, Faculty of Veterinary Science, Bangladesh Agricultural University (Former EPAU), MymensinghGoogle Scholar

  • Chen M.G., Mott K.E., 1990. Progress in assessment of morbidity due to Fasciola hepatica infection: a review of recent literature. Tropical Diseases Bulletin, 87, R1-R38Google Scholar

  • Chu J.K., Kim Y.K. 1967. Taxonomical study on the Fasciolidae in Korea. Korean Journal of Parasitology, 5, 139–146Google Scholar

  • Dos-Reis S.P., Pessoa L.M., Strauss R.E. 1990. Application of size-free canonical discriminant analysis to studies of geographic differentiation. Brazilian Journal of Genetics, 13, 509–520Google Scholar

  • Dujardin J.P. 2008. Morphometrics applied to medical entomology. InfectionGenetics and Evolution, 8, 875–890Google Scholar

  • Dujardin J.P., Le-Pont F. 2004. Geographical variation of metric properties within the neotropical sandflies. InfectionGenetics and Evolution, 4, 353–359Google Scholar

  • Fuentes M.V., Valero M.A., Bargues M.D., Esteban J.G., Angles R., Mas-Coma S. 1999. Analysis of climatic data and forecast indices for human fascioliasis at very high altitude. Annals of Tropical Medicine and Parasitology, 93, 835–850Google Scholar

  • Fuentes M.V., Malone J.B., Mas-Coma S. 2001. Validation of a mapping and predicting model for human fasciolosis transmission in Andean very high altitude endemic areas using remote sensing data. Acta Tropica, 79, 87–95Google Scholar

  • Girones N., Valero M.A., García-Bodelón M.A., Chico-Calero M.I., Punzón C., Fresno M., Mas-Coma S. 2007. Immune supression in advanced chronic fascioliasis: an experimental study in a rat model. Journal of infectious Diseases, 195, 1504–1512Google Scholar

  • Hossain M.M., Paul S., Rahman M.M., Hossain F.M.A., Hossain M.T., Islam M.R. 2011. Prevalence and economic significance of caprine fascioliasis at Sylhet district of Bangladesh. Pakistan Veterinary Journal, 3, 113–116Google Scholar

  • Ichikawa M., Bawn S., Mawd N.N., Htun L.L., Thein M., Gyi A., Sunn K., Katakura K., Itagaki T. 2011. Characterization of Fasciola spp. in Myanmar on the basis of spermatogenesis status and nuclear and mitochondrial DNA markers. Parasitology International, 60, 474–479. DOI: 10.1016/j.parint. 2011.08.007CrossrefGoogle Scholar

  • IPCC. 2007. Intergovernmental Panel on Climate Change. Climate Change: Synthesis Report; Summary for Policymakers. Working Group contributions to the Fourth Assessment Report, IPCC Plenary XXVII (Valencia, Spain, 12–17 November 2007). Retrieved from: http://www.ipcc.ch/pdf/assessmentreport/ar4/syr/ar4_syr_spm.pdfGoogle Scholar

  • Kendall S.B. 1954. Fascioliasis in Pakistan. Annals of Tropical Medicine and Parasitology, 43, 307-313Google Scholar

  • Kendall S.B. 1965. Relationships between the species of Fasciola and the molluscan hosts. Advances in Parasitology, 3, 59–98Google Scholar

  • Kimura S., Shimizu A., Kawano J. 1984. Morphological observation on liver fluke detected from naturally infected carabaos in the Philippines. The Science Reports of the Faculty of AgricultureKobe University, 16, 353–357Google Scholar

  • Klingenberg C.P. 1996. Multivariate allometry. In: (Eds. L.F. Marcus, M. Corti, A. Loy, G.J.P. Naylor, D. Slice) Advances in Morphometrics. Proceedings of the 1993 NATO-ASI on Morphometrics, NATO ASI, Ser. A, Life Sciences. Plenum Publishers, New York, 23–49Google Scholar

  • Mas-Coma S., Valero M.A., Bargues M.D. 2008. Effects of climate change on animal and zoonotic helminthiases. Revue Scientifique et Technique de l’Office Internationale des Epizooties, 27, 443–457Google Scholar

  • Mas-Coma S., Valero M.A., Bargues M.D. 2009a. Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Advances in Parasitology, 69, 41–146. DOI: 10.1016/S0065-308X(09)69002-3CrossrefGoogle Scholar

  • Mas-Coma, S., Valero, M.A., Bargues, M.D., 2009b. Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis. Veterinary Parasitology, 163, 264–280. DOI: 10.1016/j.vetpar.2009.03.024CrossrefGoogle Scholar

  • Mas-Coma S., Agramunt V.H., Valero M.A. 2014a. Neurological and ocular fascioliasis in humans. Advances in Parasitology, 84, 27–149. DOI: 10.1016/B978-0-12-800099-1.00002-8CrossrefGoogle Scholar

  • Mas-Coma S., Bargues M.D., Valero M.A. 2014b. Diagnosis of human fascioliasis by stool and blood techniques: Update for the present global scenario. Parasitology, 141, 1918–1946. DOI: 10.1017/S0031182014000869CrossrefGoogle Scholar

  • Moghaddam A.S., Massoud J., Mahmoodi M., Mahvi A.H., Periago M.V., Artigas P., Fuentes M.V., Bargues M.D., Mas-Coma S. 2004. Human and animal fascioliasis in Mazandaran province, northern Iran. Parasitology Research, 94, 61–69Google Scholar

  • Mohanta U.K., Ichikawa-Seki M., Shoriki T., Katakura K., Itagaki T. 2014. Characteristics and molecular phylogeny of Fasciola flukes from Bangladesh, determined based on spermatogenesis and nuclear and mitochondrial DNA analyses. Parasitology Research, 113, 2493–2501. DOI: 10.1007/ s00436-014-3898-5CrossrefGoogle Scholar

  • Nooruddin M., Islam K.S. 1996. Distribution and body size of Fasciola gigantica in livers of Bengal goats in Bangladesh. Small Ruminant Research, 19, 189–191Google Scholar

  • Periago M.V., Valero M.A., Panova M., Mas-Coma S. 2006. Phenotypic comparison of allopatric populations of Fasciola hepatica and Fasciola gigantica from European and African bovines using a computer image analysis system (CIAS). Parasitology Research, 99, 368–378Google Scholar

  • Periago M.V., Valero M.A., El-Sayed M., Ashrafi K., El-Wakeel A., Mohamed M.Y., Desquesnes M., Curtale F., Mas-Coma S. 2008. First phenotypic description of Fasciola hepatica/Fasciola gigantica intermediate forms from the human endemic area of the Nile Delta, Egypt. InfectionGenetics and Evolution, 8, 51–58Google Scholar

  • Qureshi A.W., Tanveer A. 2009. Seroprevalence of fasciolosis in buffaloes and humans in some areas of Punjab, Pakistan. Pakistan Journal of Science, 61, 91–96Google Scholar

  • Qureshi A.W., Tanveer A., Qureshi S.W., Maqbool A., Gill T.J., Ali S.A. 2005. Epidemiology of human fasciolosis in rural areas of Lahore, Pakistan. Punjab University Journal of Zoology, 20, 159–168Google Scholar

  • Robertson A. 1976. Handbook on Animal Diseases in the Tropics. 3rd Edition. British Veterinary Association, 7 Mansfield Street, London W 1 M OAT, UK, pp. 227–230Google Scholar

  • Rohlf F.J., Marcus L.F. 1993. A revolution in morphometrics. Trends in Ecology and Evolution, 8, 129–132. DOI: 10.1016/01695347(93)90024-JCrossrefGoogle Scholar

  • Spithill T.W., Smooker P.M., Copeman D.B. 1999. Fasciola gigantica: epidemiology, control, immunology and molecular biology. In: (Ed. J.P. Dalton) Fasciolosis, CAB International Publishing, Wallingford, 465–525Google Scholar

  • Srimuzipo P., Komalamisra C., Choochote W., Jitpakdi A., Vanichthanakorn P., Keha P., Riyong D., Sukontasan K., Komalamisra N., Sukontasan K., Tippawangkosol P. 2000. Comparative morphometry, morphology of egg and adult surface topography under light and scanning electron microscopies, and metaphase karyotype among three size-races of Fasciola gigantica in Thailand. Southeast Asian Journal of Tropical Medicine and Public Health, 31, 366–373Google Scholar

  • Terasaki K., Noda Y., Shibahara T., Itagaki T. 2000. Morphological comparisons and hypotheses on the origin of polyploids in parthenogenetic Fasciola sp. Journal of Parasitology, 86, 724–729Google Scholar

  • Torgerson P., Claxton J. 1999. Epidemiology and controlIn: (EdJ.P. Dalton) Fasciolosis, CAB International Publishing, Wallingford, 113–149Google Scholar

  • Valero M.A, Mas-Coma S. 2000. Comparative infectivity of Fasciola hepatica metacercariae from isolates of the main and secondary reservoir animal host species in the Bolivian Altiplano high human endemic region. Folia Parasitologica, 47, 17–22Google Scholar

  • Valero M.A., Marcos M.D., Fons R., Mas-Coma S. 1998. Fasciola hepatica development in experimentally infected black rat, Rattus rattus. Parasitology Research, 84, 188–194Google Scholar

  • Valero M.A., Darce N.A., Panova M., Mas-Coma S. 2001a. Relationships between host species and morphometric patterns in Fasciola hepatica adults and eggs from the Northern Bolivian Altiplano hyperendemic region. Veterinary Parasitology, 102, 85–100Google Scholar

  • Valero M.A., Panova M., Mas-Coma S. 2001b. Development differences in the uterus of Fasciola hepatica between livestock liver fluke populations from Bolivian highland and European lowlands. Parasitology Research, 87, 337–342Google Scholar

  • Valero M.A., Panova M., Comes A.M., Fons R., Mas-Coma S. 2002. Patterns in size and shedding of Fasciola hepatica eggs by naturally and experimentally infected murid rodents. Journal of Parasitology, 88, 308–313Google Scholar

  • Valero M.A., Santana M., Morales M., Hernandez J.L., Mas-Coma, S. 2003. Risk of gallstone disease in advanced chronic phase of fascioliasis: an experimental study in a rat model. Journal of Infectious Diseases, 188, 787–793Google Scholar

  • Valero M.A., Panova M., Mas-Coma S. 2005. Phenotypic analysis of adults and eggs of Fasciola hepatica by computer image analysis system. Journal of Helminthology, 79, 217–225Google Scholar

  • Valero M.A., Navarro M., Garcia-Bodelon M.A., Marcilla A., Morales M., Garcia J.E., Hernandez J.L., Mas-Coma S. 2006a. High risk of bacterobilia in advanced experimental chronic fasciolosis. Acta Tropica, 100, 17–23Google Scholar

  • Valero M.A., De Renzi M., Panova M., García-Bodelón MA, Periago M.V., Ordoñez D., Mas-Coma S. 2006b. Crowding effect on adult growth, pre-patent period and egg shedding of Fasciola hepatica. Parasitology. 133, 453–463Google Scholar

  • Valero M.A., Girones N., Garcia-Bodelon M.A., Periago M.V., Chico-Calero I., Khoubbane M., Fresno M., Mas-Coma S., 2008. Anaemia in advanced chronic fasciolosis. Acta Tropica, 108, 35–43Google Scholar

  • Valero M.A., Perez-Crespo I., Periago M.V., Khoubbane M., Mas-Coma S. 2009a. Fluke egg characteristics for the diagnosis of human and animal fascioliasis by Fasciola hepatica and F. gigantica. Acta Tropica, 111, 150–159. DOI: 10.1016/j.actatropica.2009.04.005CrossrefGoogle Scholar

  • Valero M.A., Ubeira F.M., Khoubbane M., Artigas P., Muiño L., Mezo M., Pérez-Crespo I., Periago M.V., Mas-Coma S. 2009b. MM3-ELISA evaluation of coproantigen release and serum antibody production in sheep experimentally infected with Fasciola hepatica and F. gigantica. Veterinary Parasitology, 159, 77–81. DOI: 10.1016/j.vetpar.2008.10.014Google Scholar

  • Valero M.A., Panova M., Pérez-Crespo I., Khoubbane M., Mas-Coma S. 2011. Correlation between egg-shedding and uterus development in Fasciola hepatica human and animal isolates: applied implications. Veterinary Parasitology, 183, 79–86. DOI: 10.1016/j.vetpar.2011.07.003CrossrefGoogle Scholar

  • Valero M.A., Periago M.V., Pérez-Crespo I., Rodríguez E., Perteguer M.J., Garate T., González-Barbera E.M., Mas-Coma S. 2012a. Assessing the validity of an ELISA test for the serological diagnosis of human fascioliasis in different epidemiological situations. Tropical Medicine and International Health, 17, 630–636. DOI: 10.1111/j.1365-3156.2012.02964.xCrossrefGoogle Scholar

  • Valero M.A., Periago M.V., Pérez-Crespo I., Angles R., Villegas F., Aguirre C., Strauss W., Espinoza J.R., Herrera P., Terashima A., Tamayo H., Engels D., Gabrielli A.F., Mas-Coma S. 2012b. Field evaluation of a coproantigen detection test for fascioliasis diagnosis and surveillance in human hyperendemic areas of Andean countries. PLoS Neglected Tropical Diseases, 6, e1812. DOI: 10.1371/journal.pntd.0001812CrossrefGoogle Scholar

  • Valero M.A., Perez-Crespo I., Khoubbane M., Artigas P., Panova M., Ortiz P., Maco V., Espinoza J.R., Mas-Coma S. 2012c. Fasciola hepatica phenotypic characterization in Andean human endemic areas: valley versus altiplanic patterns analysed in liver flukes from sheep from Cajamarca and Mantaro, Peru. InfectionGenetics and Evolution, 12, 403–410. DOI: 10.1016/j.meegid.2012.01.009CrossrefGoogle Scholar

  • Varma A.K. 1953. On Fasciola indica n. sp. with some observations on F. hepatica and F. gigantica. Journal of Helminthology, 27, 185–198Google Scholar

  • Watanabe S. 1962. Fasciolosis of ruminants in Japan. Bulletin de l’Office International des Epizooties, 58, 313–322Google Scholar

  • World Health Organization. 2013. Sustaining the drive to overcome the global impact of neglected tropical diseases. World Health Organization, WHO Headquarters, Geneva, pp. 138Google Scholar

About the article

Received: 2015-05-19

Revised: 2015-09-11

Accepted: 2015-01-12

Published Online: 2016-03-30

Published in Print: 2016-06-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0037.

Export Citation

© W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in