Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 61, Issue 2


Dynamics and effects of Ligula intestinalis (L.) infection in the native fish Barbus callensis Valenciennes, 1842 in Algeria

Sonia Ould Rouis
  • Corresponding author
  • Faculty of Biological Sciences (FSB), Department of Ecology and Environment, Laboratory of Dynamic and Biodiversity, University of Science and Technology Houari Boumediene (USTHB) BP 32, El Alia Bab-Ezzouar 16111 Algiers, Algeria
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Abdelhalim Ould Rouis
  • Faculty of Biological Sciences (FSB), Department of Ecology and Environment, Laboratory of Dynamic and Biodiversity, University of Science and Technology Houari Boumediene (USTHB) BP 32, El Alia Bab-Ezzouar 16111 Algiers, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Henri J. Dumont
  • Department of Biology, Limnology Section, Ghent University, Ledeganckstraat 35, Ghent, B-9000, Belgium
  • Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kit Magellan / Abdeslem Arab
  • Faculty of Biological Sciences (FSB), Department of Ecology and Environment, Laboratory of Dynamic and Biodiversity, University of Science and Technology Houari Boumediene (USTHB) BP 32, El Alia Bab-Ezzouar 16111 Algiers, Algeria
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-30 | DOI: https://doi.org/10.1515/ap-2016-0041


The dynamics of the emergence, duration, and decline phases in epizootic cycles are well known for humans and some crops, but they are poorly understood for host–parasite systems in the wild. Parasites may be particularly insidious as they are often introduced unintentionally, simultaneously with their hosts, and later transferred to species in the new location. Here we investigate the epizootic dynamics of the tapeworm Ligula intestinalis in the Hamiz reservoir, Algeria, and explore its effects on the cyprinid fish Barbus callensis. Regular sampling was conducted from October 2005 to February 2008 with intermittent surveys carried out until 2010. Five percent of the 566 specimens of B. callensis that were caught were infected, with the maximum number of parasites found in spring. There was no obvious difference in weight between uninfected fish and infected ones, and infection did not affect fish condition. However, infected fish were significantly longer than uninfected fish and had inhibited gonad development. The proportion of infected fish caught was significantly higher in year 1 and by the second winter, infection collapsed to zero. The Ligula infection thus appeared to have minimal ecological effects and be of a temporary nature, thus exhibiting an epizootic cycle. Taken together, our data indicates that this infection declined or even failed during our study period. Failure may be due to the specific genetic strain of Ligula, but invasive carp may also have been influential in both the introduction and subsequent decline of this parasite.

Keywords: Ligula intestinalis; epizootics; cyprinid fish; infection parameters; North Africa


  • Avibase 2014. The World Bird Database (24 June 2003) http://avibase.bsc-eoc.orgGoogle Scholar

  • Barber I., Daniel Hoare D., Krause J. 2000. Effects of parasites on fish behaviour: a review and evolutionary perspective. Reviews in Fish Biology and Fisheries, 10, 131–165Google Scholar

  • Barson M., Marshall B.E. 2003. The occurrence of the tapeworm, Ligula intestinalis (L.), in Barbus paludinosus from a small dam in Zimbabwe. African Journal of Aquatic Science, 28, 75–78Google Scholar

  • Bouzid-Lamine W. 2008. Genetic structure of Ligula intestinalis (Cestoda : Diphyllobothriidea), a parasite of freshwater fish. PhD Thesis, University of Toulouse III – Paul Sabatier, France, pp. 162. (In French)Google Scholar

  • Bouzid W., Štefka J., Bahri-Sfar L., Peter Beerli P., Loot G., Lek S., Haddaoui N., Hypša V., Tomáš Scholz T., Dkhil-Abbes T., Meddour R., Ben Hassine O.K. 2013. Pathways of cryptic invasion in a fish parasite traced using coalescent analysis and epidemiological survey. Biological Invasions, 15, 1907–1923. DOI: 10.1007/s10530-013-0418-yCrossrefGoogle Scholar

  • Bouzid W., Stefka J., Hypsa V., Lek S., Scholz T., Legal L., Ben Has-sine O.K., Loot G. 2008. Geography and host specificity: Two forces behind the genetic structure of the freshwater fish parasite Ligula intestinalis (Cestoda: Diphyllobothriidae). International Journal for Parasitology, 38 (12), 1465–1479. DOI: 10.1016/j.ijpara.2008.03.008CrossrefGoogle Scholar

  • Britton J.R., Pegg J. 2011. Ecology of European Barbel Barbus Bar-bus: Implications for River, Fishery, and Conservation Management. Reviews in Fisheries Science, 19, 321–330. DOI: 10.1080/10641262.2011.599886CrossrefGoogle Scholar

  • Britton J.R., Jackson M.C., Harper D.M. 2009. Ligula intestinalis (Cestoda: Diphyllobothriidae) in Kenya: a field investigation into host specificity and behavioural alterations. Parasitology, 136, 1367–1373. DOI: 10.1017/S003118200999059XCrossrefGoogle Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets Ecology on its own Terms: Margolis et al. Revised. Journal of Parasitology, 83, 575–583. DOI: 10.2307/3284227CrossrefGoogle Scholar

  • Carter V., Pierce R., Dufour S., Arme C., Hoole D. 2005. The tapeworm Ligula intestinalis (Cestoda: Pseudophyllidea) inhibits LH expression and puberty in its teleost host, Rutilus rutilus. Society for Reproduction and Fertility, 130, 939–945. DOI:10.1530/rep.1.00742CrossrefGoogle Scholar

  • Cherghou S., Khodari M., Yaâkoubi F., Benadid M., Badri A. 2002. Contribution to the study of the diet of barbel, Barbus barbus callensis (Valenciennes, 1842) of a stream of the Middle Atlas (Morocco): wadi Boufekrane. Revue des sciences de l’eau, 15, 153–163. (In French)Google Scholar

  • Crivelli A.J. 1992. Are introduced species the right answer to the declining inland fisheries within the Mediterranean region? World Fisheries Congress, Abstract Bulletin, 143Google Scholar

  • Dejen E., Vijverberg J., Sibbing F.A. 2006. Spatial and temporal variation of cestode infection and its effects on two small barbs (Barbus humilis and B. tanapelagius) in Lake Tana, Ethiopia. Hydrobiologia, 556, 109–117. DOI: 10.1007/s10750-0051187-0CrossrefGoogle Scholar

  • Dubinina M.N. 1980. Tapeworms, (Cestoda, Ligulidae) of the Fauna of the U.S.S.R. US Department of Commerce National Technical Information Service Springfield, USA, pp. vii + 320Google Scholar

  • Dumont H.J. 1979. Limnologie van Sahara en Sahel. D Sci Thesis, University of Ghent, Belgium, pp. 557Google Scholar

  • Dunn A.M., Torchin M.E., Hatcher M.J., Kotanen P.M., Blumenthal D.M., Byers J.E., Coon Courtney A.C., Frankel V.M., Holt R.D., Hufbauer R.A., Kanarek A.R., Schierenbeck K.A., Wolfe L.M., Perkins S.E. 2012. Indirect effects of parasites in invasions. Functional Ecology, 26, 1262–1274. DOI:10.1111/ j.1365-2435.2012.02041.xCrossrefGoogle Scholar

  • Dussart B. 1967. Copepods inland waters of Western Europe. I: calanoid and harpacticoid]. N. Boubée et Cie (eds.), Paris, pp. 1–500 (In French)Google Scholar

  • Dussart B. 1969. Copepods inland waters of Western Europe. II: Cyclopoids and biology. N. Boubée et Cie (eds.), Paris, 1–292 pp. (In French)Google Scholar

  • Ergonul M.B., Altindag A. 2005. The effects of Ligula intestinalis plerocercoids on the growth features of Tench, Tinca tinca. Turkish Journal of Veterinary and Animal Sciences, 29, 1337–1341Google Scholar

  • Froese R., Pauly D. 2014. Fishbase. World Wide Web electronic publication. (version 06/2014). http://www.fishbase.orgGoogle Scholar

  • García N., Cuttelod A., Abdul Malak D. (ed) 2010. The Status and Distribution of Freshwater Biodiversity in Northern Africa. Gland, Switzerland, Cambridge, UK, and Malaga, Spain: IUCN ISBN: 978-2-8317-1271-0, pp. 141Google Scholar

  • Georgiev B.B., Angelov A., Vasileva G.P., Sánchez M.I., Hortas F., Mutafchiev Y., Pankov P., Green A.J. 2014. Larval helminths in the invasive American brine shrimp Artemia franciscana throughout its annual cycle. Acta Parasitologica, 59, 000–000. DOI: 10.2478/s11686-014-0255-xCrossrefGoogle Scholar

  • Heins D.C., Baker J.A., Green D.M. 2011. Processes influencing the duration and decline of epizootics in Schistocephalus solidus. Journal of Parasitology 97, 371–376. DOI: 10.1645/GE-2699.1CrossrefGoogle Scholar

  • Hoole D., Carter V., Dufour S. 2010. Ligula intestinalis (Cestoda: Pseudophyllidea): an ideal fish-metazoan parasite model? Parasitology, 137, 425–438. DOI:10.1017/S0031182010000107CrossrefGoogle Scholar

  • IUCN 2014. The IUCN Red List of Threatened Species. Version 3.2014. www.iucnredlist.orgGoogle Scholar

  • Jobling S., Tyler C.R. 2003. Endocrine disruption, parasites and pollutants in wild freshwater fish. Parasitology, 126, S103–S107 DOI: 10.1017/S0031182003003652CrossrefGoogle Scholar

  • Kennedy C.R. 1993. Introductions, spread and colonization of new localities by fish helminth and crustacean parasites in the British Isles: A perspective ans appraisal. Journal of Fish Biology, 43, 287–301Google Scholar

  • Kennedy C.R., Burrough R.J. 1981. The establishment and subsequent history of a population of Ligula intestinalis in roach Rutilus rutilus (L.), Journal of Fish Biology, 19, 105–126. DOI: 10.1111/j.1095-8649.1981.tb05815.xCrossrefGoogle Scholar

  • Kennedy C.R., Shears P.C., Shears J.A. 2001. Long-term dynamics of Ligula intestinalis and roach Rutilus rutilus: a study of three epizootic cycles over thirty-one years. Parasitology, 123, 257–269. DOI: 10.1017/S0031182001008538CrossrefGoogle Scholar

  • Korkmaz A.S., Zencir O. 2009. Annual dynamics of tapeworm, Ligula intestinalis parasitism in Tench (Tinca tinca) from Beysehir Lake, Turkey. Journal of Animal and Veterinary Advances, 8, 1790–1793Google Scholar

  • Kraïem M.M. 1994. Systematics, biogeography and bio-ecology of Barbus callensis Valenciennes, 1842 (fish, Cyprinidae) in Tunisia. PhD Thesis, Biol. Fac. Sci., Tunisia, pp. 227 (In French)Google Scholar

  • Kraïem M.M. 1996. The diet of Barbus callensis (Cyprinidae) in Northern Tunisia. Cybium, 20, 75–85Google Scholar

  • Kroupova H., Trubiroha A., Wuertz S., Frank S.N., Sures B., Kloas W. 2012. Nutritional status and gene expression along the somatotropic axis in roach (Rutilus rutilus) infected with the tapeworm Ligula intestinalis. General and Comparative Endocrinology, 177, 270–277. DOI: 10.1016/j.ygcen.2012. 04.007CrossrefGoogle Scholar

  • Lafferty K.D., Torchin M.E., Kuris A.M. 2010. The geography of host and parasite invasions Pages 191–202 in S. Morand and B. Krasnow, eds. The Geography of Host–Parasite Interactions. Oxford University Press, Oxford, U.K.Google Scholar

  • Lévêque C., Daget J. 1984. Cyprinidae. In: CLOFFA 1: Check List of the Freshwater Fishes of Africa (Dajet J., Gosse J.P. & Thys van den Audenaerde D.F.E.), Orstom & Tervuren: MRAC (eds.), Paris, pp. 410Google Scholar

  • Loot G., Francisco P., Santoul F., Lek S., Guegan J.F. 2001. The three hosts of the Ligula intestinalis (Cestoda) life cycle in Laver-nose-Lacasse gravel pit, France. Archiv fur Hydrobiologie, 152, 511–525Google Scholar

  • Loot G., Aulagnier S., Lek S., Thomas F., Guegan J.F. 2002. Experimental demonstration of a behavioural modification in a cyprinid fish, Rutilus rutilus (L.), induced by a parasite, Ligula intestinalis (L.). Canadian Journal of Zoology, 80, 738–744Google Scholar

  • Margolis L., Esch G.W., Holmes J.C., Kuris A.M., Schad G.A. 1982. The use of ecological terms in parasitology (report of an ad hoc committee of the American Society of Parasitologists). Journal of Parasitology, 68, 131–133Google Scholar

  • Msafiri A., Kwendwa K., Nestory P.G., Alistidia M. 2014. Assessment of the effects of plerocercoid larvae of Ligula intestinalis (Cestoda) on Engraulicypris sardella (Cyprinidae) from northern Lake Nyasa/Malawi/Niasa. Aquatic Ecosystem Health & Management, 17, 90–96. DOI: 10.1080/14634988. 2014.875444ACrossrefGoogle Scholar

  • Nash R.D.M., Valencia A.H., Geffen A.J. 2006. The origin of Fulton’s condition factor-setting the record straight. Fisheries, 31, 236–238Google Scholar

  • Ould Rouis S., Ould Rouis A., Micha J.C., Arab A. 2012. Reproductive biology of the Cyprinidae, Barbus callensis in an Algerian Dam. Tropicultura, 30, 88–93. (In French)Google Scholar

  • Parsa Khanghah A., Mojazi Amiri B., Sharifpour I., Jalali jafari B., Motalebi A.A. 2011. Gonad tissue changes of Chalcalburnus mossulensis (Heckel, 1843) infected by Ligula intestinalis (cestoda). Iranian Journal of Fisheries Sciences, 10, 85–94Google Scholar

  • Piasecki W., Goodwin A.E., Eiras J.C., Nowak B.F. 2004. Importance of Copepoda in freshwater aquaculture. Zoological Studies, 43, 193–205Google Scholar

  • Pyšek P., Richardson D.M. 2010. Invasive Species, Environmental Change and Management, and Health. Annu. Rev. Environ. Resour., 35, 25–55. DOI: 10.1146/annurev-environ-033009095548CrossrefGoogle Scholar

  • Quinnell R.J., Grafen A., Woolhouse M.E.J. 1995. Changes in parasite aggregation with age: a discrete infection model. Parasitology, 111, 635–644Google Scholar

  • Reiczigel J., Rózsa L. 2005. Quantitative Parasitology 3.0. Budapest, Hungary. Distributed by the authorsGoogle Scholar

  • Richardson D.M., Pyšek P., Rejmánek M., Barbour M.G., Dane Panetta F., West C.J. 2000. Naturalization and Invasion of Alien Plants: Concepts and Definitions. Diversity and Distributions, 6, 93–107Google Scholar

  • Samraoui B., Samraoui F. 2008. An ornithological survey of Algerian wetlands: Important bird areas, Ramsar sites and threatened species. Wildfowl, 58, 71–96Google Scholar

  • Samraoui F., Alfarhan A.H., Al-Rasheid K.A.S., Samraoui B. 2011. An appraisal of the status and distribution of waterbirds of Algeria: indicators of global changes? Ardeola, 58, 137–163Google Scholar

  • Simberloff D., Rejmánek M. 2010. Encyclopedia of Biological Invasions University of California Press, pp. 792Google Scholar

  • Simberloff D., Martin J.L., Genovesi P., Maris V., Wardle D.A., Aronson J., Courchamp F., Galil B., Garcıà-Berthou E., Pascal M., Pyšek P., Sousa R., Tabacchi E., Vilà M. 2013. Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution, Ce Press, 28, 58–66. DOI: 10. 1016/j.tree.2012.07.013CrossrefGoogle Scholar

  • Sitjà-Bobadilla A. 2008. Living off a fish: A trade-off between parasites and the immune system. Fish & Shellfish Immunology, 25, 358–372. DOI: 10.1016/j.fsi.2008.03.018CrossrefGoogle Scholar

  • Sitjà-Bobadilla A. 2009. Can Myxosporean parasites compromise fish and amphibian reproduction? Proc. R. Soc. B., 276, 2861– 2870. DOI: 10.1098/rspb.2009.0368CrossrefGoogle Scholar

  • Trubiroha A., Kroupova H., Frank S.N., Sures B., Kloas W. 2010. Inhibition of gametogenesis by the cestode Ligula intestinalis in roach (Rutilus rutilus) is attenuated under laboratory conditions. Parasitology, 138, 648–659. DOI: 10.1017/S00311 82010001514CrossrefGoogle Scholar

  • Turgut E., Develi N., Yeşilayer N., Buhan E. 2011. Seasonal Occurrence of Ligula intestinalis infection in Cyprinids from Almus Dam Lake, Turkey. Kahramanmaras Sutcu Imam University Journal of Natural Sciences, 14, 9–11Google Scholar

  • Urdeş L., Hangan M. 2013. The Epidemiology of Ligula intestinalis (Phylum Platyhelminthes) within the Cyprinid Populations Inhabiting the Danubian Delta Area. Animal Science and Biotechnologies, 46, 273–276Google Scholar

  • Vulpe V. 2002. Parasitic invasions on fish stocks of N-E area from Moldavia. Revista Scientia Parasitologica, 3, 144–149Google Scholar

  • Yen Nhi T.T., Mohd Shazili N.A., Shaharom-Harrison F. 2013. Use of cestodes as indicator of heavy metal pollution. Experimental Parasitology, 133, 75–79. DOI: 10.1016/j.exppara.2012.10.014CrossrefGoogle Scholar

  • Zhokhov A.E., Pugacheva M.N. 2012. Distribution and occurrence of Ligula intestinalis (L.) Plerocercoids (Cestoda, Ligulidae) in the fishes of Lake Tana, Ethiopia. Inland Water Biology, 5, 293–298. DOI: 10.1134/S1995082912020162CrossrefGoogle Scholar

About the article

Received: 2015-04-12

Revised: 2015-10-12

Accepted: 2015-12-04

Published Online: 2016-03-30

Published in Print: 2016-06-01

Citation Information: Acta Parasitologica, Volume 61, Issue 2, Pages 307–318, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0041.

Export Citation

© W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in