Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 2 (Jun 2016)

Issues

Bioinformatics analysis and expression of a novel protein ROP48 in Toxoplasma gondii

Jian Zhou
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Lin Wang
  • Department of Ji Nan Children’s Hospital, 250022, Jinan, Shandong Province, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aihua Zhou
  • Department of Pediatrics, Provincial Hospital Affiliated to Shandong University, Shandong University School of Medicine, 250021, Jinan, Shandong Province, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gang Lu
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qihang Li
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhilin Wang
  • Department of Ji Nan Children’s Hospital, 250022, Jinan, Shandong Province, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Meiyan Zhu
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Huaiyu Zhou
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Hua Cong
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, Peoples Republic of China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Shenyi He
  • Corresponding author
  • Department of Parasitology, Shandong University School of Medicine, Jinan, Shandong Province 250012, Peoples Republic of China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-30 | DOI: https://doi.org/10.1515/ap-2016-0042

Abstract

Toxoplasma gondii is an obligate intracellular apicomplexan parasite, and can infect warmblooded animals and humans all over the world. In the past years, ROP family genes encoding particular proteins of T. gondii had made a great contribution to toxoplasmosis. In this study, we used multiple bioinformatics approaches to predict the physical and chemical characteristics, transmembrane domain, epitope, and topological structure of the rhoptry protein 48 (ROP48). The results indicated that ROP48 protein was mainly located in the membrane and had several positive linear-B cell epitopes and Th-cell epitopes, which suggested that ROP48 is a potential DNA vaccine candidate against toxoplasmosis. Then the PCR product amplified from the ROP48 cDNA was inserted into a pEASY-T1 vector to build a recombinant cloning plasmid. After sequencing, ROP48 was subcloned into a eukaryotic expression plasmid pEGFP-C1 to obtain pEGFP-C1-ROP48 (pROP48). After identification by PCR and restriction enzyme digestion, the recombinant plasmid pROP48 was transfected into HEK 293-T cell and identified by RT-PCR. The results showed that the eukaryotic expression plasmid pROP48 was constructed and transfected to the cells of HEK 293-T successfully. Western blotting showed that the expressed proteins can be recognized by anti-STAg mouse sera.

Keywords: Toxoplasma gondii; ROP48; Toxoplasmosis; bioinformatics analysis; cloning; expression

References

  • Ajioka J.W., Fitzpatrick J.M., Reitter C.P. 2001. Toxoplasma gondii genomics: shedding light on pathogenesis and chemotherapy. Expert Reviews in Molecular Medicine, 2001, 1–19. DOI: 10.1017/S1462399401002204CrossrefGoogle Scholar

  • Alarcon J.B., Waine G.W., McManus D.P. 1999. DNA vaccines: technology and application as anti-parasite and anti-microbial agents. Advances in Parasitology, 42, 343–410Google Scholar

  • Bai Y., He S., Zhao G., Chen L., Shi N., Zhou H., Cong H., Zhao Q., Zhu X.Q. 2012. Toxoplasma gondii: bioinformatics analysis, cloning and expression of a novel protein TgIMP1. Experimental Parasitology, 132, 458–64. DOI: 10.1016/j.exppara. 2012.09.015Web of ScienceCrossrefGoogle Scholar

  • Bhopale G.M. 2003. Development of a vaccine for toxoplasmosis: current status. Microbes and Infection, 5, 457–62Google Scholar

  • Boutet E., Lieberherr D., Tognolli M., Schneider M., Bairoch A. 2007. UniProtKB/Swiss-Prot. Methods in Molecular Biology, 406, 89–112Google Scholar

  • Camejo A., Gold D.A., Lu D., McFetridge K., Julien L., Yang N., Jensen K.D., Saeij J.P. 2014. Identification of three novel Toxoplasma gondii rhoptry proteins. International Journal for Parasitology, 44, 147–60. DOI: 10.1016/j.ijpara.2013.08.002CrossrefGoogle Scholar

  • Chen H., Chen G., Zheng H., Guo H. 2003. Induction of immune responses in mice by vaccination with Liposome-entrapped DNA complexes encoding Toxoplasma gondii SAG1 and ROP1 genes. Chinese Medical Journal, 116, 1561–6Google Scholar

  • Chen J., Xu M.J., Zhou D.H., Song H.Q., Wang C.R., Zhu X.Q. 2012. Canine and feline parasitic zoonoses in China. Parasites & Vectors, 5, 152. DOI: 10.1186/1756-3305-5-152CrossrefWeb of ScienceGoogle Scholar

  • Counihan N.A., Kalanon M., Coppel R.L., de Koning-Ward T.F. 2013. Plasmodium rhoptry proteins: why order is important. Trends in Parasitology, 29, 228–36. DOI: 10.1016/j.pt.2013. 03.003Web of ScienceCrossrefGoogle Scholar

  • Dziadek B., Gatkowska J., Brzostek A., Dziadek J., Dzitko K., Grzybowski M., Dlugonska H. 2011. Evaluation of three recombinant multi-antigenic vaccines composed of surface and secretory antigens of Toxoplasma gondii in murine models of experimental toxoplasmosis. Vaccine, 29, 821–30. DOI: 10.1016/ j.vaccine.2010.11.002Web of ScienceCrossrefGoogle Scholar

  • El H.H., Demey E., Poncet J., Lebrun M., Wu B., Galeotti N., Fourmaux M.N., Mercereau-Puijalon O., Vial H., Labesse G., Dubremetz J.F. 2006. The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling. Proteomics, 6, 5773–84. DOI: 10.1002/ pmic.200600187CrossrefGoogle Scholar

  • Frenkel J.K., Escajadillo A. 1987. Cyst rupture as a pathogenic mechanism of toxoplasmic encephalitis. The American Journal of Tropical Medicine and Hygiene, 36, 517–22Google Scholar

  • Guex N., Peitsch M.C. 1997. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 18, 2714–23. DOI: 10.1002/elps.115 0181505CrossrefWeb of ScienceGoogle Scholar

  • Guex N., Peitsch M.C., Schwede T. 2009. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis, 30 Suppl 1, S162–73. DOI: 10.1002/elps.200900140CrossrefWeb of ScienceGoogle Scholar

  • Hiszczynska-Sawicka E., Oledzka G., Holec-Gasior L., Li H., Xu J.B., Sedcole R., Kur J., Bickerstaffe R., Stankiewicz M. 2011. Evaluation of immune responses in sheep induced by DNA immunization with genes encoding GRA1, GRA4, GRA6 and GRA7 antigens of Toxoplasma gondii. Veterinary Parasitology, 177, 281–9. DOI: 10.1016/j.vetpar.2010.11.047Web of ScienceCrossrefGoogle Scholar

  • Hoseinian K.K., Ghaffarifar F., D’Souza S., Sharifi Z., Dalimi A. 2011. Evaluation of the immune response induced by DNA vaccine cocktail expressing complete SAG1 and ROP2 genes against toxoplasmosis. Vaccine, 29, 778–83. DOI: 10.1016/ j.vaccine.2010.11.012CrossrefGoogle Scholar

  • Humphrey W., Dalke A., Schulten K. 1996. VMD: visual molecular dynamics. Journal of Molecular Graphics, 14, 33–8, 27–8Google Scholar

  • Kravetz J.D., Federman D.G. 2005. Toxoplasmosis in pregnancy. The American Journal of Medicine, 118, 212–6. DOI: 10.1016/ j.amjmed.2004.08.023CrossrefGoogle Scholar

  • Lee T.Y., Hsu J.B., Chang W.C., Wang T.Y., Hsu P.C., Huang H.D. 2009. A comprehensive resource for integrating and displaying protein post-translational modifications. BMC Research Notes, 2, 111. DOI: 10.1186/1756-0500-2-111CrossrefGoogle Scholar

  • Luft B.J., Remington J.S. 1992. Toxoplasmic encephalitis in AIDS. Clinical Infectious Diseases, 15, 211–22Google Scholar

  • Meng M., He S., Zhao G., Bai Y., Zhou H., Cong H., Lu G., Zhao Q., Zhu X.Q. 2012. Evaluation of protective immune responses induced by DNA vaccines encoding Toxoplasma gondii surface antigen 1 (SAG1) and 14-3-3 protein in BALB/c mice. Parasites & Vectors, 5, 273. DOI: 10.1186/ 1756-3305-5-273CrossrefWeb of ScienceGoogle Scholar

  • Mishima M., Xuan X., Nishikawa Y., Makala L., Yokoyama N., Nagasawa H., Mikami T. 2001. Construction of recombinant feline herpesvirus type 1 expressing Toxoplasma gondii surface antigen 1. Molecular and Biochemical Parasitology, 117, 103–6Google Scholar

  • Nardoni S., Angelici M.C., Mugnaini L., Mancianti F. 2011. Prevalence of Toxoplasma gondii infection in Myocastor coypus in a protected Italian wetland. Parasites & Vectors, 4, 240. DOI: 10.1186/1756-3305-4-240Web of ScienceCrossrefGoogle Scholar

  • Reichmann G., Dlugonska H., Fischer H.G. 2002. Characterization of TgROP9 (p36), a novel rhoptry protein of Toxoplasma gondii tachyzoites identified by T cell clone. Molecular and Biochemical Parasitology, 119, 43–54Google Scholar

  • Romano P., Giugno R., Pulvirenti A. 2011. Tools and collaborative environments for bioinformatics research. Briefings in Bioinformatics, 12, 549–61. DOI: 10.1093/bib/bbr055CrossrefWeb of ScienceGoogle Scholar

  • Schwede T., Kopp J., Guex N., Peitsch M.C. 2003. SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Research, 31, 3381–5Google Scholar

  • Shaw M.K., Roos D.S., Tilney L.G. 2002. Cysteine and serine protease inhibitors block intracellular development and disrupt the secretory pathway of Toxoplasma gondii. Microbes and Infection, 4, 119–32Google Scholar

  • Tenter A.M., Heckeroth A.R., Weiss L.M. 2000. Toxoplasma gondii: from animals to humans. International Journal for Parasitology, 30, 1217–58Web of ScienceGoogle Scholar

  • Tian Y.M., Dai F.Y., Huang S.Y., Deng Z.H., Duan G., Zhou D.H., Yang J.F., Weng Y.B., Zhu X.Q., Zou F.C. 2012. First report of Toxoplasma gondii seroprevalence in peafowls in Yunnan Province, Southwestern China. Parasites & Vectors, 5, 205. DOI: 10.1186/1756-3305-5-205CrossrefWeb of ScienceGoogle Scholar

  • Yuan Z.G., Zhang X.X., He X.H., Petersen E., Zhou D.H., He Y., Lin R.Q., Li X.Z., Chen X.L., Shi X.R., Zhong X.L., Zhang B., Zhu X.Q. 2011. Protective immunity induced by Toxoplasma gondii rhoptry protein 16 against toxoplasmosis in mice. Clinical and Vaccine Immunology, 18, 119–24. DOI: 10.1128/ CVI.00312-10CrossrefGoogle Scholar

  • Zhou P., Chen Z., Li H.L., Zheng H., He S., Lin R.Q., Zhu X.Q. 2011. Toxoplasma gondii infection in humans in China. Parasites & Vectors, 4, 165. DOI: 10.1186/1756-3305-4-165CrossrefWeb of ScienceGoogle Scholar

About the article

Received: 2015-09-02

Revised: 2015-10-10

Accepted: 2015-12-10

Published Online: 2016-03-30

Published in Print: 2016-06-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0042.

Export Citation

© W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in