Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 2 (Jun 2016)

Issues

Evaluation of the in vitro activity of ceragenins against Trichomonas vaginalis

Zubeyde Akin Polat / Ali Cetin
  • Department of Obstetrics and Gynecology, Cumhuriyet University School of Medicine, Sivas, Turkey
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Poul B. Savage
Published Online: 2016-03-30 | DOI: https://doi.org/10.1515/ap-2016-0049

Abstract

Trichomonosis, caused by the protozoan parasite Trichomonas vaginalis, is a curable sexually transmitted disease that is most commonly encountered worldwide. Increasing importance of trichomoniasis and emerging of resistance against metronidazole lead to search for alternative drugs with different mode of activity. The purpose of this study was to determine in vitro activity of ceragenins (CSA-13, CSA-44, CSA-13, and CSA-138) against the metronidazole-susceptible (ATCC 30001) and metronidazole-resistant (ATCC 50138) strains of T. vaginalis. The effective concentrations were evaluated using two strains of T. vaginalis with different metronidazole susceptibilities (ATCC 30001 and ATCC 50138) in the presence of dilution series of ceragenins in 24-well microtitre assays. Overall, all the ceragenins killed the metronidazole-susceptible (ATCC 30001) and metronidazole-resistant (ATCC 50138) strains of T. vaginalis (p>0.05). With regard to the their effects against the studied strains of T. vaginalis, in order of effectiveness, overall, the ceragenins ordered as CSA-13 (the most effective), CSA-131 and CSA-138 (effective similarly), and CSA-44 (the least effective) (p<0.05). All of the ceragenins reduced the trophozoite numbers of both of studied strains of T. vaginalis with a time- and dose- dependent manner (p<0.05). Although all of the study ceragenins, CSA-13, CSA-44, CSA-13, and CSA-138, killed the studied strains of T. vaginalis. CSA-13 is the leading ceragenin as the most effective anti-trichomonas compound, followed by CSA-131 and CSA-138. They have a potential to have a place in the armemantarium of gynecologic and urologic practice for the management of sexually transmitted diseases.

Key words: Trichomonas vaginalis; ceragenin; CSA; in vitro

References

  • Arthan D., Sithiprom S., Thima K., Limmatvatirat C., Chavalitshewinkoon-Petmitr P., Svasti J. 2008. Inhibitory effects of Thai plants beta-glycosides on Trichomonas vaginalis. Parasitology Research 103, 443–448. DOI: 10.1007/s00436-008-0996-2Web of ScienceCrossrefGoogle Scholar

  • Bozkurt-Guzel C., Savage P.B., Akcali A., Ozbek-Celik B. 2014. Potential synergy activity of the novel ceragenin, CSA-13, against carbapenem-resistant Acinetobacter baumannii strains isolated from bacteremia patients. BioMed Research International DOI: 10.1155/2014/710273Google Scholar

  • Chin J.N., Rybak M.J., Cheung C.M., Savage P.B. 2007. Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 51, 1268–1273. DOI: 10.1128/AAC.01325-06CrossrefGoogle Scholar

  • Epand R.F., Pollard J.E., Wright J.O., Savage P.B., Epand R.M. 2010. Depolarization, bacterial membrane composition, and the antimicrobial action of ceragenins. Antimicrobial Agents and Chemotherapy 54, 3708–3713. DOI: 10.1128/AAC.00380-10Web of ScienceCrossrefGoogle Scholar

  • Epand R.M., Epand R.F., Savage P.B.. 2008. Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Drug News & Perspectives 21, 307–311. DOI: 10.1358/dnp. 2008.21.6.1246829CrossrefWeb of ScienceGoogle Scholar

  • Fastring D.R., Amedee A., Gatski M., Clark R.A., Mena L.A., Levison J., Schmidt N., Rice J., Gustat J., Kissinger P. 2014. Co-occurrence of Trichomonas vaginalis and bacterial vaginosis and vaginal shedding of HIV-1 RNA. Sexually Transmitted Diseases, 41, 173–179. DOI: 10.1097/OLQ.0000000000000089CrossrefGoogle Scholar

  • Figueroa-Angulo E.E., Rendón-Gandarilla F.J., Puente-Rivera J., Calla-Choque J.S., Cárdenas-Guerra R.E., Ortega-López J., Quintas-Granados L.I., Alvarez-Sánchez M.E., Arroyo R. 2012. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microbes and Infection, 14, 1411– 1427. DOI: 10.1016/j.micinf.2012.09.004CrossrefWeb of ScienceGoogle Scholar

  • Frasson A.P., Santos O., Duarte M., da Silva Trentin D., Giordani R.B., da Silva A.G., da Silva M.V., Tasca T., Macedo A.J. 2012. First report of anti-Trichomonas vaginalis activity of the medicinal plant Polygala decumbens from the Brazilian semi-arid region, Caatinga. Parasitology Research 110, 2581– 2587. DOI: 10.1007/s00436-011-2787-4Web of ScienceCrossrefGoogle Scholar

  • Hobbs M.M., Lapple D.M., Lawing L.F., Schwebke J.R., Cohen M.S., Swygard H., Atashili J., Leone P.A., Miller W.C., Seña A.C. 2006. Methods for detection of Trichomonas vaginalis in the male partners of infected women: implications for control of trichomoniasis. Journal Clinical Microbiology, 44, 3994– 3999. DOI: 10.1128/JCM.00952-06CrossrefGoogle Scholar

  • Ibrahim A.N. 2013. Comparison of in vitro activity of metronidazole and garlic-based product (Tomex®) on Trichomonas vaginalis. Parasitology Research 112:2063–2067. DOI: 10.1007/s00436013-3367-6CrossrefGoogle Scholar

  • Innocente A.M., de Brum Vieira P., Frasson A.P., Casanova B.B., Gosmann G., Gnoatto S.C., Tasca T. 2014. Anti-Trichomonas vaginalis activity from triterpenoid derivatives. Parasitology Research 113, 2933–2940. DOI: 10.1007/s00436-014-3955-0Web of ScienceCrossrefGoogle Scholar

  • Kirkcaldy R.D., Augostini P., Asbel L.E., Bernstein K.T., Kerani R.P., Mettenbrink C.J., Pathela P., Schwebke J.R., Secor W.E., Workowski K.A., Davis D., Braxton J., Weinstock H.S. 2012. Trichomonas vaginalis antimicrobial drug resistance in 6 US cities, STD Surveillance Network, 2009–2010. Emerging Infectious Diseases 18:939–943. DOI: 10.3201/eid1806.111590CrossrefWeb of ScienceGoogle Scholar

  • Kissinger P., Amedee A., Clark R.A., Dumestre J., Theall K.P., Myers L., Hagensee M.E., Farley T.A., Martin D.H. 2009. Trichomonas vaginalis treatment reduces vaginal HIV-1 shedding. Sexually Transmitted Diseases, 36, 11–16. DOI: 10.1097/OLQ.0b013e318186decfGoogle Scholar

  • Lai X.Z., Feng Y., Pollard J., Chin J.N., Rybak M.J., Bucki R., Epand R.F., Epand R.M., Savage P.B. 2008. Ceragenins: cholic acid-based mimics of antimicrobial peptides. Accounts of Chemical Research 41, 1233–1240. DOI: 10.1021/ar700270tWeb of ScienceCrossrefGoogle Scholar

  • Lara D., Feng Y., Bader J., Savage P.B., Maldonado R.A. 2010. Antitrypanosomatid activity of ceragenins. Journal of Parasitology 96: 638–642. DOI: 10.1645/GE-2329.1CrossrefWeb of ScienceGoogle Scholar

  • Leitsch D., Burgess A.G., Dunn L.A., Krauer K.G., Tan K., Duchêne M., Upcroft P., Eckmann L., Upcroft J.A. 2011. Pyruvate:ferredoxin oxidoreductase and thioredoxin reductase are involved in 5-nitroimidazole activation while flavin metabolism is linked to 5-nitroimidazole resistance in Giardia lamblia. AntimicroEffect of ceragenins against T. vaginalis bial Agents and Chemotherapy 66, 1756–1765. DOI: 10. 1093/jac/dkr192Web of ScienceCrossrefGoogle Scholar

  • Munson K.L., Napierala M., Munson E., Schell R.F., Kramme T., Miller C., Hryciuk J.E. 2013. Screening of male patients for Trichomonas vaginalis with transcription-mediated amplification in a community with a high prevalence of sexually transmitted infection. Journal Clinical Microbiology, 51, 101–104. DOI: 10.1128/JCM.02526-12Web of ScienceCrossrefGoogle Scholar

  • Narcisi E.M., Secor W.E. 1996. In vitro effect of tinidazole and furazolidone on metronidazole-resistant Trichomonas vaginalis. Antimicrobial Agents and Chemotherapy 40, 1121–1125Google Scholar

  • Pal D., Banerjee S., Cui J., Schwartz A., Ghosh S.K., Samuelson J. 2009. Giardia, Entamoeba, and Trichomonas enzymes activate metronidazole (nitroreductases) and inactivate metronidazole (nitroimidazole reductases). Antimicrobial Agents and Chemotherapy 53, 458–464. DOI: 10.1128/AAC.0090908CrossrefWeb of ScienceGoogle Scholar

  • Pollard J.E., Snarr J., Chaudhary V., Jennings J.D., Shaw H., Christiansen B., Wright J., Jia W., Bishop R.E., Savage P.B. 2012. In vitro evaluation of the potential for resistance development to ceragenin CSA-13. Antimicrobial Agents and Chemotherapy 67:2665–2672. DOI: 10.1093/jac/dks276CrossrefGoogle Scholar

  • Rocha D.A., de Andrade Rosa I., Urbina J.A., de Souza W., Benchimol M. 2014. The effect of 3-(biphenyl-4-yl)-3-hydoxyquinuclidine (BPQ-OH) and metronidazole on Trichomonas vaginalis: a comparative study. Parasitology Research 113, 2185–2197. DOI: 10.1007/s00436-014-3871-3Web of ScienceGoogle Scholar

  • Rocha T.D., de Brum Vieira P., Gnoatto S.C., Tasca T., Gosmann G. (2012) Anti-Trichomonas vaginalis activity of saponins from Quillaja, Passiflora, and Ilex species. Parasitology Research 110, 2551–2556. DOI: 10.1007/s00436-011-2798-1Web of ScienceCrossrefGoogle Scholar

  • Savage P.B., Li C., Taotafa U., Ding B., Guan Q. 2002. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiology Letters 217, 1–7. DOI: 10.1111/j.1574-6968.2002.tb11448.xCrossrefGoogle Scholar

  • Seña A.C., Bachmann L.H., Hobbs M.M. 2014. Persistent and recurrent Trichomonas vaginalis infections: epidemiology, treatment and management considerations. Expert Review of Anti-infective Therapy 12, 673–685. DOI: 10.1586/14787210.2014.887440CrossrefGoogle Scholar

  • Sherrard J., Ison C., Moody J., Wainwright E., Wilson J., Sullivan A. 2014. United Kingdom National Guideline on the Management of Trichomonas vaginalis. International Journal of STD & AIDS, 25, 541–549. DOI: 10.1177/0956462414525947CrossrefGoogle Scholar

  • Silver B.J., Guy R.J., Kaldor J.M., Jamil M.S., Rumbold A.R. 2014. Trichomonas vaginalis as a cause of perinatal morbidity: a systematic review and meta-analysis. Sexually Transmitted Diseases, 41, 369–376. DOI: 10.1097/OLQ.0000000000000134CrossrefGoogle Scholar

  • Smith L.M., Wang M., Zangwill K., Yeh S. 2002. Trichomonas vaginalis infection in a premature newborn. Journal of Perinatology, 22, 502–503. DOI:10.1038/sj.jp.7210714CrossrefGoogle Scholar

  • Sobel J.D. 2014. Trichomoniasis. In: UpToDate, Post TW (Ed), Up-ToDate, Waltham, MA. (Accessed on June, 2014)Google Scholar

  • WHO 2008. World Health Organization – global prevalence and incidence of selected curable sexually transmitted infections. WHO, Geneva SwitzerlandGoogle Scholar

About the article

Received: 2015-03-11

Revised: 2015-10-10

Accepted: 2015-12-23

Published Online: 2016-03-30

Published in Print: 2016-06-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0049.

Export Citation

© W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in