Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 61, Issue 2


Mass spectrometry analysis of the excretory-secretory (E-S) products of the model cestode Hymenolepis diminut a reveals their immunogenic properties and the presence of new E-S proteins in cestodes

Justyna Bień / Rusłan Sałamatin
  • Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland;
  • Department of Medical Parasitology, National Institute of Public Health – National Institute of Hygiene, Warsaw, Poland;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anna Sulima / Kirsi Savijoki / David Bruce Conn
  • Department of Invertebrate Zoology, Museum of Comparative Zoology, Harvard University, Cambridge, MA, USA;
  • One Health Center, Berry College, Mount Berry, GA, USA;
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Anu Näreaho / Daniel Młocicki
  • Corresponding author
  • W. Stefański Institute of Parasitology, Polish Academy of Sciences, Warsaw, Poland;
  • Department of General Biology and Parasitology, Medical University of Warsaw, Warsaw, Poland;
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-03-30 | DOI: https://doi.org/10.1515/ap-2016-0058


Hymenolepis diminuta is an important model species in studies of therapeutics, biochemical processes, immune responses and other aspects of cestodiasis. The parasite produces numerous excretory-secretory (E-S) proteins and a glycocalyx covering its body. Our study focused on the mass spectrometry analysis of the E-S material with an objective to determine if E-S contains any new proteins, in particular those that can be identified as: antigens, vaccine candidates and drug targets. These proteins might engage directly in host-parasite interactions. Adult parasites collected from experimentally infected rats were cultured in vitro for 5 and 18h. Immunoblotting was used to verify which E-S protein bands separated in SDS-PAGE (sodium dodecyl sulfate-polyacrylamide gel electrophoresis) react with specific antibodies from sera of infected rats. We identified thirty-nine proteins by LC-MS/MS (liquid chromatography mass spectrometry). Results indicated the presence of proteins that have never been identified in cestode E-S material. Immunoblotting showed the immunogenicity of E-S products of H. diminuta, most probably associated with the presence of proteins known as antigens in other flatworm species. Among identified proteins are those engaged in immunomodulatory processes (eg. HSP), in response to oxidative stress (peroxidasin) or metabolism (eg. GAPDH). The predominant functions are associated with metabolism and catalytic activity. This is the first study identifying E-S-proteins in adult tapeworms, thus providing information for better understanding host-parasite interrelationships, and may point out potential targets for vaccines or drug discovery studies, as among the proteins observed in our study are those known to be antigens.

Keywords: Antigens; Cestoda; excretory-secretory products; proteins; proteomics; 1D immunoblotting


  • Arai H.P. 1980. Biology of the tapeworm Hymenolepis diminuta. 1st ed. New York: Academic Press INCGoogle Scholar

  • Asea A. 2008. Heat shock proteins and toll-like receptors. Handbook of Experimental Pharmacology, 183, 111–127Google Scholar

  • Aziz A., Zhang W., Li J., Loukas A., McManus D.P., Mulvenna J. 2011. Proteomic analysis of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. Journal of Proteomics, 74, 1560–1572. DOI: 10.1016/j.jprot.2011. 02.021CrossrefGoogle Scholar

  • Bártíková H., Vokřál I., Skálová L., Kubíček V., Firbasová J., Briestenský D., Lamka J., Szostakova B. 2012. The activity of drug-metabolizing enzymes and the biotransformation of selected anthelmintics in the model tapeworm Hymenolepis diminuta. Parasitology, 139, 809–818. DOI: 10.1017/S00311 82011002265CrossrefGoogle Scholar

  • Bernal D., de la Rubia J.E., Carrasco-Abad A.M., Toledo R., Mas-Coma S., Marcilla A. 2004. Identification of enolase as plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Letters, 563, 203–206Google Scholar

  • Bien J., Näreaho A., Varmanen P., Gozdzik K., Moskwa B., Cabaj W., Nyman T.A., Savijoki K. 2012. Comparative analysis of excretory-secretory antigens of Trichinella spiralis and Trichinella britovi muscle larvae by two-dimensional difference gel electrophoresis and immunoblotting. Proteome Science, 10(1), 10. DOI: 10.1186/1477-5956-10-10CrossrefGoogle Scholar

  • Čadková Z., Miholová D., Száková J., Válek P., Jankovská I., Langrová I. 2014. Is the tapeworm able to affect tissue Pb-concentrations in white rat? Parasitology, 141, 826–836. DOI: 10.1017/S0031182013002242CrossrefGoogle Scholar

  • Charlier J., van der Voort M., Kenyon F., Skuce P., Vercruysse J. 2014. Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30, 361–367. DOI: 10.1016/j.pt.2014.04.009CrossrefGoogle Scholar

  • Chemale G., van Rossum A.J., Jefferies J.R., Barrett J., Brophy P.M., Ferreira H.B., Zaha A. 2003. Proteomic analysis of the larval stage of the parasite Echinococcus granulosus: causative agent of cystic hydatid disease. Proteomics, 3, 1633–1636Google Scholar

  • Cox F.E.G. 2002. History of Human Parasitology. Clinical Microbiology Reviews, 15, 595–612. DOI: 10.1128/CMR.15.4.595– 612.2002CrossrefGoogle Scholar

  • Cui S.J., Xu L.L., Zhang T., Xu M., Yao J., Fang C.Y., Feng Z., Yang P.Y., Hu W., Liu F. 2013. Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host-parasite interactions. Journal of Proteomics, 84, 158–175. DOI: 10.1016/j.jprot.2013.04.013CrossrefGoogle Scholar

  • Curwen R.S., Ashton P.D., Johnston D.A., Wilson R.A. 2004. The Schistosoma mansoni proteome: a comparison across four life-cycle stages. Molecular and Biochemical Parasitology, 138, 57–66Google Scholar

  • Dea-Ayuela M.A., Sadkowska-Todys M., Wroblewski J., Torrado-Durán J.J., Golab, E., Bolas-Fernández, F. 2015. Immunoproteomic analysis of Trichinella spiralis larval crude antigens recognized by sera from patients with trichinellosis after treatment with albendazole. Tropical Biomedicine, 32, 613–624Google Scholar

  • De la Torre Escudero E., Manzano-Roman R., Valero L., Oleaga A., Perez-Sanchez R., Hermandez-Gonzales A., Siles-Lucas M. 2011. Comparative proteomic analysis of Fasciola hepatica juveniles and Schistosoma bovis schistosomula. Journal of Proteomics, 74, 1534–1544. DOI: 10.1016/j.jprot.2011.05.024CrossrefGoogle Scholar

  • Elias D., Britton B., Kassu A., Akuffo H. 2007. Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance. Expert Review of Anti-infective Therapy, 5, 475–484. DOI: 10.1586/ 14787210.5.3.475CrossrefGoogle Scholar

  • Evans W.S. 1980. The cultivation of Hymenolepis in vitro. In: Arai HP editor. Biology of the tapeworm Hymenolepis diminuta. 1st ed. New York, Academic Press INC, 425–448Google Scholar

  • Garcia L.S., Bruckner D.A. 1997. Diagnostic medical parasitology. 3rd ed. Washington DC, ASM PressGoogle Scholar

  • Graepel R., Leung G., Wang A., Villemaire M., Jirik F.R., Sharkey K.A., McDougall J.J., McKay D.M. 2013. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. International Journal for Parasitology, 43, 593–601. DOI: 10.1016/j.ijpara.2013.02.006CrossrefGoogle Scholar

  • Harnett W. 2014. Secretory products of helminth parasites as immunomodulators. Molecular and Biochemical Parasitology, 195, 130–136. DOI: 10.1016/j.molbiopara.2014.03.007CrossrefGoogle Scholar

  • Hernandez J.L., Leung G., McKay D.M. 2013. Cestode regulation of inflammation and inflammatory diseases. International Journal for Parasitology, 43, 233–243. DOI: 10.1016/j.ijpara.2012.09.005CrossrefGoogle Scholar

  • Hewitson J.P., Harcus Y., Murray J., Agtmaal M., Filbey K.J., Grainger J.R., et al. 2011. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of Venom Allergen-Like (VAL) proteins. Journal of Proteomics, 74, 1573 – 1594. DOI: 10.1016/j.jprot.2011.06.002CrossrefGoogle Scholar

  • Jefferies J.R., Campbell A.M., van Rossum A.J., Barrett J., Brophy P.M. 2001. Proteomic analysis of Fasciola hepatica excretory-secretory products. Proteomics, 1, 1128–1132Google Scholar

  • Johnston M.J., MacDonald J.A., McKay D.M. 2009. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology, 136, 125–147. DOI: 10.1017/S003118200800 5210CrossrefGoogle Scholar

  • Johnston M.J., Wang A., Catarino M.E., Ball L., Phan V.C., MacDonald J.A., McKay D.M. 2010. Extracts of the rat tapeworm, Hymenolepis diminuta, suppress macrophage activation in vitro and alleviate chemically induced colitis in mice. Infection and Immunity, 78, 1364–1375. DOI: 10.1128/IAI.01349-08CrossrefGoogle Scholar

  • Kim J.H., Kim Y.J., Sohn W.M., Bae Y.M., Hong S.T., Choi M.H. 2009. Differential protein expression in Spirometra erinacei according to its development in its final host. Parasitology Research, 105, 1549–1556. DOI: 10.1007/s00436-009-1585-8CrossrefGoogle Scholar

  • Knudsen G.M., Medzihradszky K.F., Lim K.Ch., Hansell E., McKerrow J.H. 2005. Proteomic analysis of Schistosoma mansoni cercarial secretions. Molecular and Cellular Proteomics, 4, 1862–1875Google Scholar

  • Kouguchi H., Matsumoto J., Katoh Y., Suzuki T., Oku Y., Yagi K. 2010. Echinococcus multilocularis: Two-dimensional Western blotting method for the identification and expression analysis of immunogenic proteins in infected dogs. Experimental Parasitology, 124, 238–243. DOI: 10.1016/j.exppara.2009.09.016CrossrefGoogle Scholar

  • Kosik-Bogacka D.I., Wojtkowiak-Giera A., Kolasa A., Baranowska-Bosiacka I., Lanocha N., Wandurska-Nowak E., Izabela G., Salamatin R., Jagodzinski P.P. 2014. Hymenolepis diminuta: analysis of the expression of Toll-like receptor genes and protein (TLR3 and TLR9) in the small and large intestines of rats. Experimental Parasitology, 145, 161–167. DOI: 10.1016/j.exppara.2014.07.009CrossrefGoogle Scholar

  • Laschuk A., Monteneiro K.M., Vidal N.M., Pinto P.M., Duran R., Cervenanski C., Zaha A., Ferrera H.B. 2011. Proteomic survey of the cestode Mesocestoides corti during the first 24 hour of strobilar development. Parasitology Research, 108, 645–656. DOI: 10.1007/s00436-010-2109-2Google Scholar

  • Liu F., Cui S.J., Hu W., Feng Z., Wang Z.Q., Han Z.G. 2009. Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Molecular and Cellular Proteomics, 8, 1236–1251. DOI: 10.1074/mcp.M80 0538-MCP200CrossrefGoogle Scholar

  • Ludolf F., Patrocínio P.R., Corrêa-Oliveira R., Gazzinelli A., Falcone F.H., Teixeira-Ferreira A., Perales J., Oliveira G.C., Silva-Pereira R.A. 2014. Serological screening of the Schistosoma mansoni adult worm proteome. PLoS Neglected Tropical Diseases, 8, e2745. DOI: 10.1371/journal.pntd.0002745CrossrefGoogle Scholar

  • Mansur F., Luoga W., Buttle D.J., Duce I.R., Lowe A., Behnke J.M. 2015. The anthelmintic efficacy of natural plant cysteine proteinases against the rat tapeworm Hymenolepis diminuta in vivo. Journal of Helminthology, 12, 1–10. (Epub ahead of print) PubMed PMID: 25761568Google Scholar

  • Melon A., Wang A., Phan V., McKay D.M. 2010. Infection with Hymenolepis diminuta is more effective than daily corticosteroids in blocking chemically induced colitis in mice. Journal of Biomedicine and Biotechnology, 2010, 384523. DOI: 10.1155/2010/384523CrossrefGoogle Scholar

  • Monteneiro K.M., de Carvalho M.O., Zaha A., Ferreira H.B. 2010. Proteomic analysis of the Echinococcuc granulosus metacestode during infection of its intermediate host. Proteomics. 10, 1985–1999. DOI: 10.1002/pmic.200900506CrossrefGoogle Scholar

  • Morphew R.M., Barret J., Brophy P.M. 2006. In: Maule AG, Marks NJ editors. Parasitic flatworms molecular biology, biochemistry, immunology and physiology. Cambridge, MA: CABI International, 327–347Google Scholar

  • Näreaho A., Ravanko K., Hölttä E., Sukura A. 2006. Comparative analysis of Trichinella spiralis and Trichinella nativa proteins by two-dimensional gel electrophoresis. Parasitology Research, 98, 349–354Google Scholar

  • Nguyen H.A., Bae Y.A., Lee E.G., Kim S.H., Diaz-Camacho S.P., Nawa Y, Kang I., Kong Y. 2010. A novel sigma-like glutathione transferaze of Taenia solium metacestode. International Journal for Parasitology, 40, 1097–1105. DOI: 10.1016/ j.ijpara.2010.03.007CrossrefGoogle Scholar

  • Pandey A., Mann M. 2000. Proteomics to study genes and genomes. Nature, 405(6788), 837–846Google Scholar

  • Pérez-Sánchez R., Valero M.L., Ramajo-Hernández A., Siles-Lucas M., Ramajo-Martín V., Oleaga A. 2008. A proteomic approach to the identification of tegumental proteins of male and female Schistosoma bovis worms. Molecular and Biochemical Parasitology, 161, 112–123. DOI: 10.1016/j.molbiopara. 2008.06.011CrossrefGoogle Scholar

  • Pockley A.G., Muthana M., Calderwood S.K. 2008. The dual immunoregulatory roles of stress proteins. Trends in Biochememical Sciences, 33, 71– 79. DOI: 10.1016/j.tibs.2007.10.005CrossrefGoogle Scholar

  • Rebello K.M., Barros J.S.L., Mota E.M., Carvalho P.C., Perales J., Lenzi H.L., Neves_Ferreira A.G. 2011. Comprehensive proteomic profiling of adult Angiostrongylus costaricensis, a human parasitic nematode. Journal of Proteomics, 74, 1545– 1155. DOI: 10.1016/j.jprot.2011.04.031CrossrefGoogle Scholar

  • Reyes J.L., Wang A., Fernando M.R., Graepel R., Leung G., van Rooijen N., Sigvardosson M., McKay D.M. 2015. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages. Journal of Immunology, 194, 364–378. DOI: 10.4049/jimmunol.1400738CrossrefGoogle Scholar

  • Santivanez S.J., Hermandez-Gonzales A., Chile N., Oleaga A., Arana Y., Palma S., et al. 2010. Proteomic study of activated Taenia solium oncospheres. Molecular and Biochemical Parasitology, 171, 32–39. DOI: 10.1016/j.molbiopara.2010.01.004CrossrefGoogle Scholar

  • Shi M., Wang A., Prescott D., Waterhouse C.C., Zhang S., Mc-Dougall J.J., Sharkey K.A., McKay D.M. 2011. Infection with an intestinal helminth parasite reduces Freund’s complete adjuvant-induced monoarthritis in mice. Arthritis and Rheumatism, 63, 434–444. DOI: 10.1002/art.30098CrossrefGoogle Scholar

  • Shostak A.W. 2014. Hymenolepis diminuta infections in tenebrionid beetles as a model system for ecological interactions between helminth parasites and terrestrial intermediate hosts: a review and meta-analysis. Journal for Parasitology,100, 46–58. DOI: 10.1645/13-347.1.CrossrefGoogle Scholar

  • Sirover M.A. 1999. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochimica et Biophysica Acta, 1432, 159–184Google Scholar

  • Skrzycki M., Majewska M., Podsiad M., Czeczot H., Salamatin R., Twarowska J., Grynter-Zięcina B. 2011. Hymenolepis diminuta: experimental studies on the antioxidant system with short and long term infection periods in the rats. Experimental Parasitology, 129, 158–163. DOI: 10.1016/j.exppara.2011.06.014CrossrefGoogle Scholar

  • Sotillo J., Valero L., Sánchez Del Pino M.M., Fried B., Esteban J.G., Marcilla A., Toledo R. 2008. Identification of antigenic proteins from Echinostoma caproni (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunology, 30, 271–9. DOI: 10.1111/j.1365-3024.2007.01019.xCrossrefGoogle Scholar

  • Tsai I.J., Zarowiecki M., Holroyd N., Garciarrubio A., Sanchez-Flores A., Brooks K.L. et al. 2013. The genomes of four tapeworm species reveal adaptations to parasitism. Nature, 4, 496(7443), 57–63. DOI: 10.1038/nature12031CrossrefGoogle Scholar

  • Virginio V.G., Monteneiro K.M., Drumond F., de Carvalho M.O., Vargas D.M., Zaha A., Ferreira H.B. 2012. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Molecular and Biochemical Parasitology, 183, 15–22. DOI: 10.1016/j.molbiopara.2012.01.001CrossrefGoogle Scholar

  • Wang Y., Cheng Z., Lu X., Tang C. 2009. Echinococcus multilocularis: Proteomic analysis of the protoscoleces by two-dimensional electrophoresis and mass spectrometry. Experimental Parasitology, 123, 162–167. DOI: 10.1016/j.exppara.2009.06.014CrossrefGoogle Scholar

  • Woolsey I.D., Fredensborg B.L., Jensen P.M., Kapel C.M., Meyling N.V. 2015. An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host. Parasitology Research, 114, 2777–80. DOI: 10.1007/s00436-015-4477-0CrossrefGoogle Scholar

  • Yatsuda A.P., Krijgsveld J., Cornelissen A., Heck A.J.R., de Vries E. 2003. Comprehensive analysis of the secreted proteins of the parasite Haemonchus contorus reveals extensive sequence variation and differential immune recognition. Journal of Biological Chemistry, 278, 16941–16951Google Scholar

About the article

Received: 2016-01-21

Revised: 2016-02-15

Accepted: 2016-02-16

Published Online: 2016-03-30

Published in Print: 2016-06-01

Citation Information: Acta Parasitologica, Volume 61, Issue 2, Pages 429–442, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0058.

Export Citation

© W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Daniel Młocicki, Anna Sulima, Justyna Bień, Anu Näreaho, Anna Zawistowska-Deniziak, Katarzyna Basałaj, Rusłan Sałamatin, David Bruce Conn, and Kirsi Savijoki
Frontiers in Immunology, 2018, Volume 9
Patrycja Kapczuk, Danuta Kosik-Bogacka, Natalia Łanocha-Arendarczyk, Izabela Gutowska, Patrycja Kupnicka, Dariusz Chlubek, and Irena Baranowska-Bosiacka
International Journal of Molecular Sciences, 2018, Volume 19, Number 8, Page 2435
Anna Sulima, Kirsi Savijoki, Justyna Bień, Anu Näreaho, Rusłan Sałamatin, David Bruce Conn, and Daniel Młocicki
Frontiers in Microbiology, 2018, Volume 8
Anna Sulima, Justyna Bień, Kirsi Savijoki, Anu Näreaho, Rusłan Sałamatin, David Bruce Conn, and Daniel Młocicki
Parasites & Vectors, 2017, Volume 10, Number 1
Anna Zawistowska-Deniziak, Katarzyna Basałaj, Barbara Strojny, and Daniel Młocicki
Frontiers in Immunology, 2017, Volume 8

Comments (0)

Please log in or register to comment.
Log in