Arai H.P. 1980. Biology of the tapeworm Hymenolepis diminuta. 1st ed. New York: Academic Press INCGoogle Scholar
Asea A. 2008. Heat shock proteins and toll-like receptors. Handbook of Experimental Pharmacology, 183, 111–127Google Scholar
Aziz A., Zhang W., Li J., Loukas A., McManus D.P., Mulvenna J. 2011. Proteomic analysis of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. Journal of Proteomics, 74, 1560–1572. DOI: 10.1016/j.jprot.2011. 02.021CrossrefGoogle Scholar
Bártíková H., Vokřál I., Skálová L., Kubíček V., Firbasová J., Briestenský D., Lamka J., Szostakova B. 2012. The activity of drug-metabolizing enzymes and the biotransformation of selected anthelmintics in the model tapeworm Hymenolepis diminuta. Parasitology, 139, 809–818. DOI: 10.1017/S00311 82011002265CrossrefGoogle Scholar
Bernal D., de la Rubia J.E., Carrasco-Abad A.M., Toledo R., Mas-Coma S., Marcilla A. 2004. Identification of enolase as plasminogen-binding protein in excretory-secretory products of Fasciola hepatica. FEBS Letters, 563, 203–206Google Scholar
Bien J., Näreaho A., Varmanen P., Gozdzik K., Moskwa B., Cabaj W., Nyman T.A., Savijoki K. 2012. Comparative analysis of excretory-secretory antigens of Trichinella spiralis and Trichinella britovi muscle larvae by two-dimensional difference gel electrophoresis and immunoblotting. Proteome Science, 10(1), 10. DOI: 10.1186/1477-5956-10-10CrossrefGoogle Scholar
Čadková Z., Miholová D., Száková J., Válek P., Jankovská I., Langrová I. 2014. Is the tapeworm able to affect tissue Pb-concentrations in white rat? Parasitology, 141, 826–836. DOI: 10.1017/S0031182013002242CrossrefGoogle Scholar
Charlier J., van der Voort M., Kenyon F., Skuce P., Vercruysse J. 2014. Chasing helminths and their economic impact on farmed ruminants. Trends in Parasitology, 30, 361–367. DOI: 10.1016/j.pt.2014.04.009CrossrefGoogle Scholar
Chemale G., van Rossum A.J., Jefferies J.R., Barrett J., Brophy P.M., Ferreira H.B., Zaha A. 2003. Proteomic analysis of the larval stage of the parasite Echinococcus granulosus: causative agent of cystic hydatid disease. Proteomics, 3, 1633–1636Google Scholar
Cox F.E.G. 2002. History of Human Parasitology. Clinical Microbiology Reviews, 15, 595–612. DOI: 10.1128/CMR.15.4.595– 612.2002CrossrefGoogle Scholar
Cui S.J., Xu L.L., Zhang T., Xu M., Yao J., Fang C.Y., Feng Z., Yang P.Y., Hu W., Liu F. 2013. Proteomic characterization of larval and adult developmental stages in Echinococcus granulosus reveals novel insight into host-parasite interactions. Journal of Proteomics, 84, 158–175. DOI: 10.1016/j.jprot.2013.04.013CrossrefGoogle Scholar
Curwen R.S., Ashton P.D., Johnston D.A., Wilson R.A. 2004. The Schistosoma mansoni proteome: a comparison across four life-cycle stages. Molecular and Biochemical Parasitology, 138, 57–66Google Scholar
Dea-Ayuela M.A., Sadkowska-Todys M., Wroblewski J., Torrado-Durán J.J., Golab, E., Bolas-Fernández, F. 2015. Immunoproteomic analysis of Trichinella spiralis larval crude antigens recognized by sera from patients with trichinellosis after treatment with albendazole. Tropical Biomedicine, 32, 613–624Google Scholar
De la Torre Escudero E., Manzano-Roman R., Valero L., Oleaga A., Perez-Sanchez R., Hermandez-Gonzales A., Siles-Lucas M. 2011. Comparative proteomic analysis of Fasciola hepatica juveniles and Schistosoma bovis schistosomula. Journal of Proteomics, 74, 1534–1544. DOI: 10.1016/j.jprot.2011.05.024CrossrefGoogle Scholar
Elias D., Britton B., Kassu A., Akuffo H. 2007. Chronic helminth infections may negatively influence immunity against tuberculosis and other diseases of public health importance. Expert Review of Anti-infective Therapy, 5, 475–484. DOI: 10.1586/ 14787210.5.3.475CrossrefGoogle Scholar
Evans W.S. 1980. The cultivation of Hymenolepis in vitro. In: Arai HP editor. Biology of the tapeworm Hymenolepis diminuta. 1st ed. New York, Academic Press INC, 425–448Google Scholar
Garcia L.S., Bruckner D.A. 1997. Diagnostic medical parasitology. 3rd ed. Washington DC, ASM PressGoogle Scholar
Graepel R., Leung G., Wang A., Villemaire M., Jirik F.R., Sharkey K.A., McDougall J.J., McKay D.M. 2013. Murine autoimmune arthritis is exaggerated by infection with the rat tapeworm, Hymenolepis diminuta. International Journal for Parasitology, 43, 593–601. DOI: 10.1016/j.ijpara.2013.02.006CrossrefGoogle Scholar
Harnett W. 2014. Secretory products of helminth parasites as immunomodulators. Molecular and Biochemical Parasitology, 195, 130–136. DOI: 10.1016/j.molbiopara.2014.03.007CrossrefGoogle Scholar
Hernandez J.L., Leung G., McKay D.M. 2013. Cestode regulation of inflammation and inflammatory diseases. International Journal for Parasitology, 43, 233–243. DOI: 10.1016/j.ijpara.2012.09.005CrossrefGoogle Scholar
Hewitson J.P., Harcus Y., Murray J., Agtmaal M., Filbey K.J., Grainger J.R., et al. 2011. Proteomic analysis of secretory products from the model gastrointestinal nematode Heligmosomoides polygyrus reveals dominance of Venom Allergen-Like (VAL) proteins. Journal of Proteomics, 74, 1573 – 1594. DOI: 10.1016/j.jprot.2011.06.002CrossrefGoogle Scholar
Jefferies J.R., Campbell A.M., van Rossum A.J., Barrett J., Brophy P.M. 2001. Proteomic analysis of Fasciola hepatica excretory-secretory products. Proteomics, 1, 1128–1132Google Scholar
Johnston M.J., MacDonald J.A., McKay D.M. 2009. Parasitic helminths: a pharmacopeia of anti-inflammatory molecules. Parasitology, 136, 125–147. DOI: 10.1017/S003118200800 5210CrossrefGoogle Scholar
Johnston M.J., Wang A., Catarino M.E., Ball L., Phan V.C., MacDonald J.A., McKay D.M. 2010. Extracts of the rat tapeworm, Hymenolepis diminuta, suppress macrophage activation in vitro and alleviate chemically induced colitis in mice. Infection and Immunity, 78, 1364–1375. DOI: 10.1128/IAI.01349-08CrossrefGoogle Scholar
Kim J.H., Kim Y.J., Sohn W.M., Bae Y.M., Hong S.T., Choi M.H. 2009. Differential protein expression in Spirometra erinacei according to its development in its final host. Parasitology Research, 105, 1549–1556. DOI: 10.1007/s00436-009-1585-8CrossrefGoogle Scholar
Knudsen G.M., Medzihradszky K.F., Lim K.Ch., Hansell E., McKerrow J.H. 2005. Proteomic analysis of Schistosoma mansoni cercarial secretions. Molecular and Cellular Proteomics, 4, 1862–1875Google Scholar
Kouguchi H., Matsumoto J., Katoh Y., Suzuki T., Oku Y., Yagi K. 2010. Echinococcus multilocularis: Two-dimensional Western blotting method for the identification and expression analysis of immunogenic proteins in infected dogs. Experimental Parasitology, 124, 238–243. DOI: 10.1016/j.exppara.2009.09.016CrossrefGoogle Scholar
Kosik-Bogacka D.I., Wojtkowiak-Giera A., Kolasa A., Baranowska-Bosiacka I., Lanocha N., Wandurska-Nowak E., Izabela G., Salamatin R., Jagodzinski P.P. 2014. Hymenolepis diminuta: analysis of the expression of Toll-like receptor genes and protein (TLR3 and TLR9) in the small and large intestines of rats. Experimental Parasitology, 145, 161–167. DOI: 10.1016/j.exppara.2014.07.009CrossrefGoogle Scholar
Laschuk A., Monteneiro K.M., Vidal N.M., Pinto P.M., Duran R., Cervenanski C., Zaha A., Ferrera H.B. 2011. Proteomic survey of the cestode Mesocestoides corti during the first 24 hour of strobilar development. Parasitology Research, 108, 645–656. DOI: 10.1007/s00436-010-2109-2Google Scholar
Liu F., Cui S.J., Hu W., Feng Z., Wang Z.Q., Han Z.G. 2009. Excretory/secretory proteome of the adult developmental stage of human blood fluke, Schistosoma japonicum. Molecular and Cellular Proteomics, 8, 1236–1251. DOI: 10.1074/mcp.M80 0538-MCP200CrossrefGoogle Scholar
Ludolf F., Patrocínio P.R., Corrêa-Oliveira R., Gazzinelli A., Falcone F.H., Teixeira-Ferreira A., Perales J., Oliveira G.C., Silva-Pereira R.A. 2014. Serological screening of the Schistosoma mansoni adult worm proteome. PLoS Neglected Tropical Diseases, 8, e2745. DOI: 10.1371/journal.pntd.0002745CrossrefGoogle Scholar
Mansur F., Luoga W., Buttle D.J., Duce I.R., Lowe A., Behnke J.M. 2015. The anthelmintic efficacy of natural plant cysteine proteinases against the rat tapeworm Hymenolepis diminuta in vivo. Journal of Helminthology, 12, 1–10. (Epub ahead of print) PubMed PMID: 25761568Google Scholar
Melon A., Wang A., Phan V., McKay D.M. 2010. Infection with Hymenolepis diminuta is more effective than daily corticosteroids in blocking chemically induced colitis in mice. Journal of Biomedicine and Biotechnology, 2010, 384523. DOI: 10.1155/2010/384523CrossrefGoogle Scholar
Monteneiro K.M., de Carvalho M.O., Zaha A., Ferreira H.B. 2010. Proteomic analysis of the Echinococcuc granulosus metacestode during infection of its intermediate host. Proteomics. 10, 1985–1999. DOI: 10.1002/pmic.200900506CrossrefGoogle Scholar
Morphew R.M., Barret J., Brophy P.M. 2006. In: Maule AG, Marks NJ editors. Parasitic flatworms molecular biology, biochemistry, immunology and physiology. Cambridge, MA: CABI International, 327–347Google Scholar
Näreaho A., Ravanko K., Hölttä E., Sukura A. 2006. Comparative analysis of Trichinella spiralis and Trichinella nativa proteins by two-dimensional gel electrophoresis. Parasitology Research, 98, 349–354Google Scholar
Nguyen H.A., Bae Y.A., Lee E.G., Kim S.H., Diaz-Camacho S.P., Nawa Y, Kang I., Kong Y. 2010. A novel sigma-like glutathione transferaze of Taenia solium metacestode. International Journal for Parasitology, 40, 1097–1105. DOI: 10.1016/ j.ijpara.2010.03.007CrossrefGoogle Scholar
Pandey A., Mann M. 2000. Proteomics to study genes and genomes. Nature, 405(6788), 837–846Google Scholar
Pérez-Sánchez R., Valero M.L., Ramajo-Hernández A., Siles-Lucas M., Ramajo-Martín V., Oleaga A. 2008. A proteomic approach to the identification of tegumental proteins of male and female Schistosoma bovis worms. Molecular and Biochemical Parasitology, 161, 112–123. DOI: 10.1016/j.molbiopara. 2008.06.011CrossrefGoogle Scholar
Pockley A.G., Muthana M., Calderwood S.K. 2008. The dual immunoregulatory roles of stress proteins. Trends in Biochememical Sciences, 33, 71– 79. DOI: 10.1016/j.tibs.2007.10.005CrossrefGoogle Scholar
Rebello K.M., Barros J.S.L., Mota E.M., Carvalho P.C., Perales J., Lenzi H.L., Neves_Ferreira A.G. 2011. Comprehensive proteomic profiling of adult Angiostrongylus costaricensis, a human parasitic nematode. Journal of Proteomics, 74, 1545– 1155. DOI: 10.1016/j.jprot.2011.04.031CrossrefGoogle Scholar
Reyes J.L., Wang A., Fernando M.R., Graepel R., Leung G., van Rooijen N., Sigvardosson M., McKay D.M. 2015. Splenic B cells from Hymenolepis diminuta-infected mice ameliorate colitis independent of T cells and via cooperation with macrophages. Journal of Immunology, 194, 364–378. DOI: 10.4049/jimmunol.1400738CrossrefGoogle Scholar
Santivanez S.J., Hermandez-Gonzales A., Chile N., Oleaga A., Arana Y., Palma S., et al. 2010. Proteomic study of activated Taenia solium oncospheres. Molecular and Biochemical Parasitology, 171, 32–39. DOI: 10.1016/j.molbiopara.2010.01.004CrossrefGoogle Scholar
Shi M., Wang A., Prescott D., Waterhouse C.C., Zhang S., Mc-Dougall J.J., Sharkey K.A., McKay D.M. 2011. Infection with an intestinal helminth parasite reduces Freund’s complete adjuvant-induced monoarthritis in mice. Arthritis and Rheumatism, 63, 434–444. DOI: 10.1002/art.30098CrossrefGoogle Scholar
Shostak A.W. 2014. Hymenolepis diminuta infections in tenebrionid beetles as a model system for ecological interactions between helminth parasites and terrestrial intermediate hosts: a review and meta-analysis. Journal for Parasitology,100, 46–58. DOI: 10.1645/13-347.1.CrossrefGoogle Scholar
Sirover M.A. 1999. New insights into an old protein: the functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochimica et Biophysica Acta, 1432, 159–184Google Scholar
Skrzycki M., Majewska M., Podsiad M., Czeczot H., Salamatin R., Twarowska J., Grynter-Zięcina B. 2011. Hymenolepis diminuta: experimental studies on the antioxidant system with short and long term infection periods in the rats. Experimental Parasitology, 129, 158–163. DOI: 10.1016/j.exppara.2011.06.014CrossrefGoogle Scholar
Sotillo J., Valero L., Sánchez Del Pino M.M., Fried B., Esteban J.G., Marcilla A., Toledo R. 2008. Identification of antigenic proteins from Echinostoma caproni (Trematoda) recognized by mouse immunoglobulins M, A and G using an immunoproteomic approach. Parasite Immunology, 30, 271–9. DOI: 10.1111/j.1365-3024.2007.01019.xCrossrefGoogle Scholar
Tsai I.J., Zarowiecki M., Holroyd N., Garciarrubio A., Sanchez-Flores A., Brooks K.L. et al. 2013. The genomes of four tapeworm species reveal adaptations to parasitism. Nature, 4, 496(7443), 57–63. DOI: 10.1038/nature12031CrossrefGoogle Scholar
Virginio V.G., Monteneiro K.M., Drumond F., de Carvalho M.O., Vargas D.M., Zaha A., Ferreira H.B. 2012. Excretory/secretory products from in vitro-cultured Echinococcus granulosus protoscoleces. Molecular and Biochemical Parasitology, 183, 15–22. DOI: 10.1016/j.molbiopara.2012.01.001CrossrefGoogle Scholar
Wang Y., Cheng Z., Lu X., Tang C. 2009. Echinococcus multilocularis: Proteomic analysis of the protoscoleces by two-dimensional electrophoresis and mass spectrometry. Experimental Parasitology, 123, 162–167. DOI: 10.1016/j.exppara.2009.06.014CrossrefGoogle Scholar
Woolsey I.D., Fredensborg B.L., Jensen P.M., Kapel C.M., Meyling N.V. 2015. An insect-tapeworm model as a proxy for anthelminthic effects in the mammalian host. Parasitology Research, 114, 2777–80. DOI: 10.1007/s00436-015-4477-0CrossrefGoogle Scholar
Yatsuda A.P., Krijgsveld J., Cornelissen A., Heck A.J.R., de Vries E. 2003. Comprehensive analysis of the secreted proteins of the parasite Haemonchus contorus reveals extensive sequence variation and differential immune recognition. Journal of Biological Chemistry, 278, 16941–16951Google Scholar
Comments (0)