Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 3 (Sep 2016)

Issues

High occurrence of Acanthamoeba genotype T4 in soil sources from Bolívar State, Venezuela

Carolina Wagner
  • University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, La Laguna, Tenerife, Canary Islands, Spain
  • Cátedra de Parasitología, Escuela de Bioanálisis, Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ María Reyes-Batlle
  • University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, La Laguna, Tenerife, Canary Islands, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Aurora Hernán
  • Cátedra de Parasitología, Escuela de Medicina "José María Vargas", Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Elsy Rojas
  • Cátedra de Parasitología, Escuela de Medicina "José María Vargas", Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gladymar Pérez
  • Cátedra de Parasitología, Escuela de Medicina "José María Vargas", Facultad de Medicina, Universidad Central de Venezuela, Caracas, Venezuela
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Atteneri López-Arencibia
  • University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, La Laguna, Tenerife, Canary Islands, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ines Sifaoui
  • University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, La Laguna, Tenerife, Canary Islands, Spain
  • Laboratoire Matériaux-Molécules et Applications, IPEST, University of Carthage, La Marsa, Tunisia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Enrique Martínez-Carretero
  • University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, La Laguna, Tenerife, Canary Islands, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ José E. Piñero
  • University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, La Laguna, Tenerife, Canary Islands, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Basilio Valladares
  • University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, La Laguna, Tenerife, Canary Islands, Spain
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jacob Lorenzo-Morales
  • Corresponding author
  • University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Avda. Astrofísico Fco. Sánchez, La Laguna, Tenerife, Canary Islands, Spain
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-21 | DOI: https://doi.org/10.1515/ap-2016-0063

Abstract

Pathogenic strains of Acanthamoeba are causative agents of keratitis and encephalitis that often may end fatal in humans and other animals. In the present study, twenty-seven soil samples were collected in the Bolivar State in Venezuela and checked for the presence of Acanthamoeba. Samples were cultivated onto 2% non-nutrient agar plates seeded with a layer of heat killed E. coli. Amplification by PCR and sequencing of the DF3 region of the 18S rDNA of Acanthamoeba was carried out in order to confirm morphological identification of the amoebae. Furthermore, Acanthamoeba spp. was isolated from 51.8% of soil samples. Sequencing of the DF3 region of the 18S rDNA resulted in the identification of genotype T4 in all samples. To the best of our knowledge, this is the first report of genotype T4 in soil sources from Venezuela. Further studies should be carried out in this State and in the country in order to determine the current occurrence of Acanthamoeba in Venezuelan environments.

Keywords: Acanthamoeba; genotype; soil; Bolívar State; Venezuela

References

  • Adamska M., Leonska-Duniec A., Lanocha N., Skotarczak B. 2014. Thermophilic pathogenic amoebae isolated from natural water bodies in Poland and their molecular characterization. Acta Parasitologica, 59, 433–441Google Scholar

  • Booton G.C., Visvesvara G.S., Byers T.J., Kelly D.J., Fuerst P.A. 2005. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. Journal of Clinical Microbiology, 43, 1689–1693Google Scholar

  • Corsaro D., Walochnik J., Köhsler M., Rott M.B. 2015. Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli sp. nov. (genotype T19). Parasitology Research, 114, 2481–2490Web of ScienceGoogle Scholar

  • Culbertson C.G., Smith J.W., Cohen H.K., Minner J.R. 1959. Experimental infection of mice and monkeys by Acanthamoeba. American Journal of Pathology, 3, 185–197Google Scholar

  • Derda M., Wojtkowiak-Giera A., Hadas E. 2014. Comparative analyses of different genetic markers for the detection of Acanthamoeba spp. Isolates. Acta Parasitologica, 59, 472–427Web of ScienceGoogle Scholar

  • Gast R.J., Ledee D.R., Fuerst P.A., Byers T.J. 1996. Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. Journal of Eukaryotic Microbiology, 43, 498–504Google Scholar

  • Gast R.J. 2001. Development of an Acanthamoeba-specific reverse dot-blot and the discovery of a new ribotype. Journal of Eukaryotic Microbiology, 48, 609–615Google Scholar

  • Geisen S., Fiore-Donno A.M., Walochnik J., Bonkowski M. 2014. Acanthamoeba everywhere: high diversity of Acanthamoeba in soils. Parasitology Research, 113, 3151–3158Google Scholar

  • Hewet M.K., Robinson B.S., Monis P.T., Saint C.P. 2003. Identification of a new Acanthamoeba 18S rRNA gene sequence type, corresponding to the species Acanthamoeba jacobsi Sawyer, Nerad and Visvesvara, 1992 (Lobosea: Acanthamoebidae). Acta Protozoologica, 42, 325–329Google Scholar

  • Horn M., Fritsche T.R., Gautom R.K., Schleifer K.H., Wagner M. 1999. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environmental Microbiology, 1, 357–367Google Scholar

  • Lasjerdi Z., Niyyati M., Lorenzo-Morales J., Haghighi A., Taghipour N. 2015. Ophthalmology hospital wards contamination to pathogenic free living Amoebae in Iran. Acta Parasitologica, 60, 417–422Web of ScienceGoogle Scholar

  • Lorenzo-Morales J., Monteverde-Miranda C.A., Jiménez C., Tejedor M.L., Valladares B., Ortega-Rivas A. 2005. Evaluation of Acanthamoeba isolates from environmental sources in Tenerife, Canary Islands, Spain. Annals of Agricultural and Environmental Medicine, 12, 233–236Google Scholar

  • Lorenzo-Morales J., Ortega-Rivas A., Martínez E., Khoubbane M., Artigas P., Periago M.V., Foronda P., Abreu-Acosta N., Valladares B., Mas-Coma S. 2006. Acanthamoeba isolates belonging to T1, T2, T3, T4 and T7 genotypes from environmental freshwater samples in the Nile Delta region, Egypt. Acta Tropica, 100, 63–69Google Scholar

  • Lorenzo-Morales J., Martín-Navarro C.M., López-Arencibia A., Arnalich-Montiel F., Piñero J.E., Valladares B. 2013. Acanthamoeba keratitis: an emerging disease gathering importance worldwide?. Trends in Parasitology, 29, 181–187Web of ScienceGoogle Scholar

  • Lorenzo-Morales J., Khan N.A., Walochnik J. 2015. An update on Acanthamoeba keratitis: diagnosis, pathogenesis and treatment. Parasite, 22, 10Google Scholar

  • Maciver S.K., Asif M., Simmen M.W., Lorenzo-Morales J. 2013. A systematic analysis of Acanthamoeba genotype frequency correlated with source and pathogenicity: T4 is confirmed as a pathogen-rich genotype. European Journal of Protistology, 49, 217–221Google Scholar

  • Magnet A., Henriques-Gil N., Galván-Diaz A.L., Izquierdo F., Fenoy S., del Aguila C. 2014. Novel Acanthamoeba 18S rRNA gene sequence type from an environmental isolate. Parasitology Research, 113, 2845–2850Web of ScienceGoogle Scholar

  • Nuprasert W., Putaporntip C., Pariyakanok L., Jongwutiwes S. 2010. Identification of a novel T17 genotype of Acanthamoeba from environmental isolates and T10 genotype causing keratitis in Thailand. Journal of Clinical Microbiology, 48 4636–4640Web of ScienceGoogle Scholar

  • Qvarnstrom Y., Nerad T.A., Visvesvara G.S. 2013. Characterization of a New Pathogenic Acanthamoeba Species, A. byersi n. sp., Isolated from a Human with Fatal Amoebic Encephalitis. Journal of Eukaryotic Microbiology, 60, 626–633Web of ScienceGoogle Scholar

  • Rahdar M., Niyyati M., Salehi M., Feghhi M., Makvandi M., Pourmehdi M., Farnia S. 2012. Isolation and genotyping of Acanthamoeba strains from environmental sources in Ahvaz City, Khuzestan Province Southern Iran. Iranian Journal of Parasitology, 7, 22–26Google Scholar

  • Reyes-Batlle M., Todd C.D., Martín-Navarro C.M., López-Arencibia A., Cabello-Vilchez A.M., González A.C., Córdoba-Lanús E., Lindo J.F., Valladares B., Piñero J.E., Lorenzo-Morales J. 2014. Isolation and characterization of Acanthamoeba strains from soil samples in Gran Canaria, Canary Islands, Spain. Parasitology Research, 113, 1383–1388Web of ScienceGoogle Scholar

  • Siddiqui R., Khan N.A., 2012. Biology and pathogenesis of Acanthamoeba. Parasites and Vectors, 5, 6Web of ScienceCrossrefGoogle Scholar

  • Stothard D.R., Schroeder-Diedrich J.M., Awwad M.H., Gast R.J., Ledee D.R., Rodriguez-Zaragoza S., Dean C.L., Fuerst P.A., Byers T.J. 1998. The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. Journal of Eukaryotic Microbiology, 45, 45–54Google Scholar

  • Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011. MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution. 28, 2731–2739Google Scholar

  • Todd C.D., Reyes-Batlle M., Martín-Navarro C.M., Dorta-Gorrín A., López-Arencibia A., Martínez-Carretero E., Piñero J.E., Valladares B., Lindo J.F., Lorenzo-Morales J. 2015. Isolation and genotyping of Acanthamoeba strains from soil sources from Jamaica, West Indies. Journal of Eukaryotic Microbiology, 62, 416–421Google Scholar

  • Valladares M., Reyes-Batlle M., Martín-Navarro C.M., López-Arencibia A., Dorta-Gorrín A., Wagner C., Martínez-Carretero E., Piñero J.E., Valladares B, Lorenzo-Morales J. 2015. Molecular characterization of Acanthamoeba strains isolated from domestic dogs in Tenerife, Canary Islands, Spain. Archives of Microbiology, 197, 639–643Google Scholar

About the article

Received: 2015-11-18

Revised: 2016-01-28

Accepted: 2016-02-03

Published Online: 2016-07-21

Published in Print: 2016-09-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0063.

Export Citation

© W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in