Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 3 (Sep 2016)

Issues

Molecular screening for bacteria and protozoa in great cormorants (Phalacrocorax carbo sinensis) nesting in Slovakia, central Europe

Bronislava Víchová / Katarína Reiterová / Silvia Špilovská / Lucia Blaňarová / Zuzana Hurníková / Ĺudmila Turčeková
Published Online: 2016-07-21 | DOI: https://doi.org/10.1515/ap-2016-0078

Abstract

This study brings the data about the occurrence of bacterial and protozoan pathogens in 32 great cormorants (Phalacrocorax carbo sinensis), representing approximately 20% of the population nesting in the surroundings of water basin Liptovská Mara (northern part of Central Slovakia). A survey revealed the presence of tick-borne bacteria Anaplasma phagocytophilum (6.25%) and parasitic protozoa Toxoplasma gondii (3.1%). These data indicate an infectious status of the great cormorant population nesting in Slovakia; they might suggest a degree of environmental contamination by infectious agents and demonstrate the role of migratory seabirds in the circulation and dispersal of pathogens with zoonotic potential.

Keywords: Great cormorant; Slovakia; ticks; Anaplasma; Toxoplasma; Neospora

References

  • Alekseev A.N., 2006. The effects of global climatic changes on bloodsucking ectoparasites and pathogens they transmit. Vestnik Rossiiskoi akademii meditsinskikh nauk, 21–25Google Scholar

  • Bjoersdorff A., Bergstrom S., Massung R.F., Haemig P.D., Olsen B., 2001. Ehrlichia-infected ticks on migrating birds. Emerging Infectious Diseases, 7, 877–879. DOI: CrossrefGoogle Scholar

  • Casati S., Sager H., Gern L., Piffaretti J.C., 2006. Presence of potentially pathogenic Babesia sp. for human in Ixodes ricinus in Switzerland. Annals of Agricultural and Environmental Medicine, 13, 65–70Google Scholar

  • Costa K.S., Santos S.L., Uzeda R.S., Pinheiro A.M., Almeida M.A., Araujo F.R., McAllister M.M., Gondim L.F., 2008. Chickens (Gallus domesticus) are natural intermediate hosts of Neospora caninum. International Journal for Parasitology, 38, 157–159. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Darwich L., Cabezon O., Echeverria I., Pabon M., Marco I., Molina-Lopez R., Alarcia-Alejos O., Lopez-Gatius F., Lavin S., Almeria S., 2012. Presence of Toxoplasma gondii and Neospora caninum DNA in the brain of wild birds. Veterinary Parasitology, 183, 377–381. DOI: CrossrefGoogle Scholar

  • Deem S.L., Merkel J., Ballweber L., Vargas F.H., Cruz M.B., Parker P.G., 2010. Exposure to Toxoplasma gondii in Galapagos Penguins (Spheniscus mendiculus) and flightless cormorants (Phalacrocorax harrisi) in the Galapagos Islands, Ecuador. Journal of Wildlife Diseases, 46, 1005–1011. DOI: CrossrefGoogle Scholar

  • Derdakova M., Beati L., Pet’ko B., Stanko M., Fish D., 2003. Genetic variability within Borrelia burgdorferi sensu lato genospecies established by PCR-single-strand conformation polymorphism analysis of the rrfA-rrlB intergenic spacer in Ixodes ricinus ticks from the Czech Republic. Applied and Environmental Microbiology, 69, 509–516. DOI: CrossrefGoogle Scholar

  • Dietrich M., Gomez-Diaz E., McCoy K.D., 2011. Worldwide distribution and diversity of seabird ticks: implications for the ecology and epidemiology of tick-borne pathogens. Vector Borne and Zoonotic Diseases, 11, 453–470. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Dubey J.P., Zarnke R., Thomas N.J., Wong S.K., Van Bonn W., Briggs M., Davis J.W., Ewing R., Mense M., Kwok O.C., Romand S., Thulliez P., 2003. Toxoplasma gondii, Neospora caninum, Sarcocystis neurona, and Sarcocystis canis-like infections in marine mammals. Veterinary Parasitology, 116, 275–296. DOI: CrossrefGoogle Scholar

  • Franke J., Meier F., Moldenhauer A., Straube E., Dorn W., Hildebrandt A., 2010. Established and emerging pathogens in Ixodes ricinus ticks collected from birds on a conservation island in the Baltic Sea. Medical and Veterinary Entomology, 24, 425–432. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Gondim L.S., Abe-Sandes K., Uzeda R.S., Silva M.S., Santos S.L., Mota R.A., Vilela S.M., Gondim L.F., 2010. Toxoplasma gondii and Neospora caninum in sparrows (Passer domesticus) in the Northeast of Brazil. Veterinary Parasitology, 168, 121–124. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Hildebrandt A., Franke J., Meier F., Sachse S., Dorn W., Straube E., 2010. The potential role of migratory birds in transmission cycles of Babesia spp. Anaplasma phagocytophilum, and Rickettsia spp. Ticks and Tick-borne Diseases, 1, 105–107. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Hornok S., Kovats D., Csorgo T., Meli M.L., Gonczi E., Hadnagy Z., Takacs N., Farkas R., Hofmann-Lehmann R., 2014. Birds as potential reservoirs of tick-borne pathogens: first evidence of bacteraemia with Rickettsia helvetica. Parasites & Vectors, 7, 128. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Humair P.F., Douet V., Moran Cadenas F., Schouls L.M., Van De Pol I., Gern L., 2007. Molecular identification of bloodmeal source in Ixodes ricinus ticks using 12S rDNA as a genetic marker. Journal of Medical Entomology, 44, 869–880. DOI: CrossrefGoogle Scholar

  • Kawahara M., Rikihisa Y., Isogai E., Takahashi M., Misumi H., Suto C., Shibata S., Zhang C., Tsuji M., 2004. Ultrastructure and phylogenetic analysis of ‘Candidatus Neoehrlichia mikurensis’ in the family Anaplasmataceae, isolated from wild rats and found in Ixodes ovatus ticks. International Journal of Systematic and Evolutionary Microbiology, 54, 1837–1843. DOI: CrossrefGoogle Scholar

  • Lommano E., Dvorak C., Vallotton L., Jenni L., Gern L., 2014. Tickborne pathogens in ticks collected from breeding and migratory birds in Switzerland. Ticks and tick-borne diseases, 5, 871–882. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Martins J., Kwok O.C., Dubey J.P., 2011. Seroprevalence of Neospora caninum in free-range chickens (Gallus domesticus) from the Americas. Veterinary Parasitology, 182, 349–351. DOI: CrossrefGoogle Scholar

  • Massung R.F., Slater K., Owens J.H., Nicholson W.L., Mather T.N., Solberg V.B., Olson J.G., 1998. Nested PCR assay for detection of granulocytic ehrlichiae. Journal of Clinical Microbiology, 36, 1090–1095Google Scholar

  • McCoy K.D., Boulinier T., Chardine J.W., Danchin E., Michalakis Y., 1999. Dispersal and distribution of the tick Ixodes uriae within and among seabird host populations: the need for a population genetic approach. Journal of Parasitology, 85, 196–202. DOI: CrossrefGoogle Scholar

  • Ogden N.H., Lindsay L.R., Hanincova K., Barker I.K., Bigras-Poulin M., Charron D.F., Heagy A., Francis C.M., O’Callaghan C.J., Schwartz I., Thompson R.A., 2008. Role of migratory birds in introduction and range expansion of Ixodes scapularis ticks and of Borrelia burgdorferi and Anaplasma phagocytophilum in Canada. Applied and Environmental Microbiology, 74, 1780–1790. DOI: CrossrefGoogle Scholar

  • Olsen B., Jaenson T.G., Bergstrom S., 1995. Prevalence of Borrelia burgdorferi sensu lato-infected ticks on migrating birds. Applied and Environmental Microbiology, 61, 3082–3087. DOI: CrossrefGoogle Scholar

  • Paulauskas A., Radzijevskaja J., Rosef O., 2009. Anaplasma in ticks feeding on migrating birds and questing ticks in Lithuania and Norway. Clinical Microbiology and Infection, 15 Suppl 2, 34–36. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Prestrud K.W., Asbakk K., Fuglei E., Mork T., Stien A., Ropstad E., Tryland M., Gabrielsen G.W., Lydersen C., Kovacs K.M., Loonen M.J., Sagerup K., Oksanen A., 2007. Serosurvey for Toxoplasma gondii in arctic foxes and possible sources of infection in the high Arctic of Svalbard. Veterinary Parasitology, 150, 6–12. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Pujol-Rique M., Derouin F., Garcia-Quintanilla A., Valls M.E., Miro J.M., Jimenez de Anta M.T., 1999. Design of a one-tube heminested PCR for detection of Toxoplasma gondii and comparison of three DNA purification methods. Journal of Medical Microbiology, 48, 857–862. DOI: CrossrefGoogle Scholar

  • Roux V., Raoult D., 1995. Inter- and intraspecies identification of Bartonella (Rochalimaea) species. Journal of Clinical Microbiology, 33, 1573–1579. DOI: CrossrefGoogle Scholar

  • Roux V., Rydkina E., Eremeeva M., Raoult D., 1997. Citrate synthase gene comparison, a new tool for phylogenetic analysis, and its application for the rickettsiae. International Journal of Systematic Bacteriology, 47, 252–261. DOI: CrossrefGoogle Scholar

  • Skotarczak B., Rymaszewska A., Wodecka B., Sawczuk M., Adamska M., Maciejewska A., 2006. PCR detection of granulocytic Anaplasma and Babesia in Ixodes ricinus ticks and birds in west-central Poland. Annals of Agricultural and Environmental Medicine, 13, 21–23Google Scholar

  • Slabeyová K., Ridzoň J., Karaska D., Topercer J., Darolová A., 2011. Report on winter waterbird census in Slovakia in the season 2009/10 (Správa zo zimného scítania vodného vtáctva na Slovensku 2009/10), SOS/BirdLife Slovensko, Bratislava, 160 pp. (in Slovak)Google Scholar

  • Yamage M., Flechtner O., Gottstein B., 1996. Neospora caninum: specific oligonucleotide primers for the detection of brain "cyst" DNA of experimentally infected nude mice by the polymerase chain reaction (PCR). Journal of Parasitology, 82, 272–279Google Scholar

About the article

Received: 2015-07-15

Revised: 2016-03-31

Accepted: 2016-04-07

Published Online: 2016-07-21

Published in Print: 2016-09-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0078.

Export Citation

© W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in