Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 61, Issue 3


Description of three species of Isorchis (Digenea: Atractotrematidae) from Australia

Michael J. Andres
  • Corresponding author
  • Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, Mississippi 39564, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Eric E. Pulis / Robin M. Overstreet
  • Department of Coastal Sciences, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, Mississippi 39564, USA
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-07-21 | DOI: https://doi.org/10.1515/ap-2016-0079


Three species of Isorchis Durio and Manter, 1969 are described from Australian waters. Isorchis megas sp. nov. is described from the spotbanded scat, Selenotoca multifasciata (Richardson), off Western Australia (WA) and Northern Territory (NT); Isorchis currani sp. nov. is described from S. multifasciata off NT; and Isorchis anomalus sp. nov. is described from the milkfish, Chanos chanos Forsskål, off WA. Isorchis megas sp. nov. can be differentiated from the other species of Isorchis by possessing a single, large egg that is greater than 20% of the body length; having a shorter body (the largest specimen is less than 500 μm); and utilizing a scatophagid rather than a chanid host. Isorchis currani sp. nov. can be differentiated from species of Isorchis other than I. megas sp. nov. by utilizing a scatophagid rather than a chanid host; it is differentiated from I. megas sp. nov. in having eggs that are 11-15% of the body length. Isorchis anomalus sp. nov. can be differentiated from all other species of Isorchis in possessing an irregular shaped genital pore rather than one that is circular to oblong. A Bayesian inference analysis of partial 28S rDNA sequences of the three new species of Isorchis and 30 other haploporoids revealed 1) the monophyly of the Atractotrematidae Yamaguti, 1939, 2) the two species of Isorchis infecting S. multifasciata were each other’s closest relative, and 3) that Isorchis was most closely related to Pseudomegasolena Machida and Komiya, 1976 rather than Atractotrema Goto and Ozaki, 1929 although sequence data are not yet available for a member of Pseudisorchis Ahmad, 1985.

Keywords: Chanos; trematode; Haploporidae; Haploporoidea; Scatophagidae; phylogeny


  • Ahmad J. 1985. Studies on digenetic trematodes of marine fishes from the Arabian Sea, off the Panjim Coast, Goa, India. Part 49. On three new haploporid trematodes (Digenea: Haploporidae). Revista Ibérica de Parasitologia, 45, 281–291Google Scholar

  • Andres M.J., Curran S.S., Fayton T.J., Pulis E.E., Overstreet R.M. 2015. An additional genus and two additional species of Forticulcitinae (Digenea Haploporidae). Folia Parasitologica, 62, 025. DOI: CrossrefGoogle Scholar

  • Andres M.J., Pulis E.E., Cribb T.H., Overstreet R.M. 2014. Erection of a new haploporine genus and its phylogenetic relationship within the Haploporinae Nicoll, 1914. Systematic Parasitology, 89, 185–194. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Bagarinao T. 1994. Systematics, distribution, genetics and life history of milkfish, Chanos chanos. Environmental Biology of Fishes, 39, 23–41Google Scholar

  • Besprozvannykh V.V., Atopkin D.M., Ermolenko A.V., Nikitenko A. 2014. Restoration of the genus Parasaccocoelium Zhukov, 1971 (Digenea: Haploporidae) and a description of two new species from mugilid fish in the Far East of Russia. Journal of Helminthology, 89, 565–576. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Blasco-Costa I., Balbuena J.A., Kostadinova A., Olson P.D. 2009. Interrelationships of the Haploporinae (Digenea: Haploporidae): A molecular test of the taxonomic framework based on morphology. Parasitology International, 58, 263–269. DOI:CrossrefWeb of ScienceGoogle Scholar

  • Blasco-Costa I., Balbuena J.A., Raga J.A., Kostadinova A., Olson P.D. 2010. Molecules and morphology reveal cryptic variation among digeneans infecting sympatric mullets in the Mediterranean. Parasitology, 137, 287–302. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Bray R.A. 1982. Two new species of Bacciger Nicoll, 1914 (Digenea: Fellodistomidae) from mullet in Australia. Journal of Natural History, 16, 23–29. DOI: CrossrefGoogle Scholar

  • Bray R.A., Cribb T.H., Waeschenbach A., Littlewood D.T.J. 2014. Molecular evidence that the genus Cadenatella Dollfus, 1946 (Digenea: Plagiorchiida) belongs in the superfamily Haploporoidea Nicoll, 1914. Systematic Parasitology, 89, 15–21. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Cribb T.H., Anderson G.R., Bray R.A. 1999. Faustulid trematodes (Digenea) from marine fishes of Australia. Systematic Parasitology, 44, 119–138Google Scholar

  • Cribb T.H., Bray R.A., Diaz P.E., Huston D.C., Kudlai O., Martin S.B., Yong R.Q.-Y., Cutmore S.C. 2016. Trematodes of fishes of the Indo-west Pacific: told and untold richness. Systematic Parasitology, 93, 237–247. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Curran S.S., Tkach V.V., Overstreet, R. M. 2006. A review of Polylekithum Arnold, 1934 and its familial affinities using morphological and molecular data, with description of Polylekithum catahoulensis sp. nov. Acta Parasitologica, 51, 238–248. DOI: CrossrefGoogle Scholar

  • Darriba D., Taboada G.L., Doallo R., Posada D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772. DOI:CrossrefWeb of ScienceGoogle Scholar

  • Durio W.O., Manter H.W. 1969. Some digenetic trematodes of marine fishes of New Caledonia. III. Acanthocolpidae, Haploporidae, Gyliauchenidae, and Cryptogonimidae. Journal of Parasitology, 55, 293–300Google Scholar

  • Froese R., Pauly D. 2015. (Eds) FishBase. World Wide Web electronic publication. http://www.fishbase.org, version (4/2015)

  • Guindon S., Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704. DOI:CrossrefGoogle Scholar

  • Hall T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Research, 41, 95–98Google Scholar

  • Herrmann K.K., Poulin R., Keeney D.B., Blasco-Costa I. 2014. Genetic structure in a progenetic trematode: signs of cryptic species with contrasting reproductive strategies. International Journal of Parasitology, 44, 811–818. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Huelsenbeck J.P., Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17, 754–755. DOI: CrossrefGoogle Scholar

  • Huelsenbeck J.P., Ronquist F., Nielsen R., Bollback J.P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310–2314. DOI: CrossrefGoogle Scholar

  • Jones A. 2005. Superfamily Haploporoidea Nicoll, 1914. In: (Eds. A. Jones, R.A. Bray and D.I. Gibson) Keys to the Trematoda, Vol. 2. CABI Publishing and the Natural History Museum, London, 127–128Google Scholar

  • Katoh K., Kuma K.-I., Toh H., Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511–518. DOI: CrossrefGoogle Scholar

  • Lee C.L., Peerzada N., Guinea M. 1993. Control of aquatic plants in aquaculture using silver scat, Selenotoca multifasciata. Journal of Applied Aquaculture, 2, 77–83Google Scholar

  • Martin W.E. 1974. Isorchis manteri sp. n. from Australian mullet and a key to haploporid trematode genera with two testes. Proceedings of the Helminthological Society of Washington, 40, 237–40Google Scholar

  • Miller T.L., Cribb T.H. 2005. A new genus and species of cryptogonimid from Lutjanus spp. (Pisces: Lutjanidae) on the Great Barrier Reef and New Caledonia. Journal of Parasitology, 91, 922–924. DOI: CrossrefGoogle Scholar

  • Nolan M.J., Cribb T.H. 2005. The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology, 60, 101–163Web of ScienceGoogle Scholar

  • Olson P.D., Cribb T.H., Tkach V.V., Bray R.A., Littlewood D.T.J. 2003. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal of Parasitology, 33, 733–755. DOI: CrossrefGoogle Scholar

  • Overstreet R.M., Curran S.S. 2005a: Family Haploporidae Nicoll, 1914. In: (Eds. A. Jones, R.A. Bray and D.I. Gibson) Keys to the Trematoda, Vol. 2. CABI Publishing and the Natural History Museum, London, 129–165Google Scholar

  • Overstreet R.M., Curran S.S. 2005b: Family Atractotrematidae Yamaguti, 1939. In: (Eds. A. Jones, R.A. Bray and D.I. Gibson) Keys to the Trematoda, Vol. 2. CABI Publishing and the Natural History Museum, London, 167–174Google Scholar

  • Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Poulin R. 1997. Egg production in adult trematodes: adaptation or constraint? Parasitology, 114, 195–204. DOI: CrossrefGoogle Scholar

  • Poulin R. 2009. Interspecific allometry of morphological traits among trematode parasites: selection and constraints. Biological Journal of the Linnean Society, 96, 533–540. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Pulis E.E., Fayton T.J., Curran S.S., Overstreet R.M. 2013. A new species of Intromugil (Digenea: Haploporidae) and redescription of Intromugil mugilicolus. Journal of Parasitology, 99, 501–508. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Pulis E.E., Overstreet R.M. 2013. Review of haploporid (Trematoda) genera with ornate muscularisation in the region of the oral sucker, including four new species and a new genus. Systematic Parasitology, 84, 167–191. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Ronquist F., Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574. DOI: CrossrefGoogle Scholar

  • Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729. DOI: CrossrefGoogle Scholar

  • Trieu N., Cutmore S.C., Miller T.L., Cribb T.H. 2015. A species pair of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) in unrelated Great Barrier Reef fishes: implications for the basis of speciation in coral reef fish trematodes. Systematic Parasitology, 91, 231–239. DOI: CrossrefWeb of ScienceGoogle Scholar

  • Wu M., Chatterji S., Eisen J.A. 2012. Accounting for alignment uncertainty in phylogenomics. PLOS ONE, 7, e30288. DOI:CrossrefWeb of ScienceGoogle Scholar

  • Yamaguti S. (Ed.). 1971. Synopsis of Digenetic Trematodes of Vertebrates. Vol. I. Keigaku, Publishing, Co., Ltd., Tokyo, pp. 1074Google Scholar

  • Zhukov, E.V. 1972. New genera of Trematodes from marine fishes of India. Parazitologiya, 6, 346–350. (In Russian)Google Scholar

About the article

Received: 2015-12-28

Revised: 2016-04-07

Accepted: 2016-04-11

Published Online: 2016-07-21

Published in Print: 2016-09-01

Citation Information: Acta Parasitologica, Volume 61, Issue 3, Pages 590–601, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0079.

Export Citation

© W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Michael J. Andres, Eric E. Pulis, Stephen S. Curran, and Robin M. Overstreet
Parasitology International, 2018, Volume 67, Number 6, Page 805
Stephen S. Curran, Eric E. Pulis, Michael J. Andres, and Robin M. Overstreet
Journal of Parasitology, 2018, Volume 104, Number 3, Page 221

Comments (0)

Please log in or register to comment.
Log in