Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 3 (Sep 2016)

Issues

Taxonomy, distribution and prevalence of parasites of tigerfish, Hydrocynus vittatus (Castelnau, 1861) in the Sanyati basin, Lake Kariba, Zimbabwe

Nyasha Mabika
  • University of Johannesburg, Department of Zoology, South Africa
  • University of Zimbabwe, Department of Anatomy, Zimbabwe
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Maxwell Barson
  • University of Johannesburg, Department of Zoology, South Africa
  • University of Zimbabwe, Department of Biological Sciences, Zimbabwe
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Cobus Van Dyk / Annemariè Avenant-Oldewage
Published Online: 2016-07-21 | DOI: https://doi.org/10.1515/ap-2016-0082

Abstract

Parasites of the tigerfish (Hydrocynus vittatus) were investigated in the period October 2014 to July 2015 in the Sanyati Basin, Lake Kariba. The fish were collected using seine netting and also during the annual Kariba International Tiger Fishing Tournament. A total of 80 fish specimens (24 males and 56 females) were collected and were infected with the following seven parasite taxa: Monogenea (Annulotrema sp.1 from the gills and Annulotrema sp.2 from the skin), Nematoda (Contracaecum larvae), Cestoda (bothriocephalid, larval cyclophyllid), Copepoda (Lamproglena hemprichii), pentastomid, Myxosporea (Myxobolus sp.,) and unicellular ciliate parasites (Trichodina sp., Tetrahymena sp., and unidentified). Annulotrema sp. 1 was observed in all fish and had the highest prevalence, mean intensity and abundance. The fish organs infected were gills, skin, fin, body cavity, stomach, intestines, mesentery, liver, kidney, brain cavity and swim bladder. No parasites were observed in the muscle, eyes and blood. The distribution of the parasites was highest in the gills and lowest in the brain cavity and swimbladder. Bothriocephalids, pentastomes and Trichodina sp. were not observed in male fish. Sex was not related to the intensity of parasites. The results of the study showed that H. vittatus has a richer parasite community than other previous investigated alestids. Pentastomes, Myxobolus sp., Trichodina sp., Tetrahymena sp. and bothriocephalid cestodes are new records for H. vittatus in Zimbabwe.

Keywords: Annulotrema; Lamproglena; Trichodina; Myxobolus; bothriocephalid; Contracaecum

References

  • Abdel-Ghaffar F., El-Toukhy A., Al-Quraishy S., Al-Rasheid K., Abdel-Baki A.S., Hegazy A., Bashtar A.R. 2008. Occurrence of myxosporean parasites in the gills of two Tilapia species from Lake Nokoúe (Benin, West Africa): effect of host size and sex, and seasonal patterns of infection. Diseases of Aquatic Organisms, 44, 27–222. DOI: CrossrefGoogle Scholar

  • Akoll P., Konecny R., Mwanja W.W., Nattabi K.J., Agoe C., Schiemer F. 2012. Parasite fauna of farmed Nile tilapia (Oreochromis niloticus) and African catfish (Clarias gariepinus) in Uganda. Parasitology Research, 110, 315–323. DOI: CrossrefGoogle Scholar

  • Balon E.K., Coche A.G. 1974. Limnological study of a tropical reservoir. In: (Eds. E.K. Balon and A.G. Coche) Lake Kariba: a man-made tropical ecosystem in central Africa. Dr. W. Junk Publishers, The Hague, Netherlands, 7–247Google Scholar

  • Basson L., Van As J.G., Paperna I. 1983. Trichodinid ectoparasites of cichlid and cyprinid fishes in South Africa and Israel. Systematic Parasitology, 5, 245–257Google Scholar

  • Basson L., Van As J.G. 1991. Trichodinids (Ciliophora: Peritrichia) from calanoid copepod and catfish from South Africa with notes on host specificity. Systematic Parasitology, 18, 147–158Google Scholar

  • Begon J., Harper J.L., Townsend C.R. 1996. Ecology, individuals, populations and communities, 3rd edn. Blackwell Science Ltd, Oxford, UK, pp.1068Google Scholar

  • Brendonck L., Maes J., Rommens W., Dekeza N., Nhiwatiwa T., Barson M., Callebaut V., Phiri C., Moreau K., Gratwicke B., Stevens M., Alyn N., Ollevier F., Marshall B. 2003. The impact of water hyacinth (Eichhornia crassipes) in a eutrophic subtropical impoundment (Lake Chivero, Zimbabwe). II. Species Diversity. Archiv für Hydrobiologie, 158(3), 389–405. DOI: CrossrefGoogle Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583Google Scholar

  • Christison K.W., Van As J.G., Basson L. 1998. Annulotrema gill parasites of Okavango characins. Microscopy Society of Southern Africa Proceedings, 28, 84Google Scholar

  • Dalu T., Clegg B., Marufu L., Nhiwatiwa T. 2012. The feeding habits of an introduced piscivore, Hydrocynus vittatus (Castelnau 1861) in a small tropical African reservoir. Pan-American Journal of Aquatic Sciences, 7, 85–92Google Scholar

  • Dollfus R.P. 1960. Mission M. Blanc, F. d’Aubenton. 1954. VII. Copépodes parasites de Téléostéens du Niger. Bulletin de I’Institut francais d’Afrique noire, 22, 170–192.Google Scholar

  • Dos Santos Q.M., Avenant-Oldewage A. 2015. Soft tissue digestion of Paradiplozoon vaalense for SEM of sclerites and simultaneous molecular analysis. Journal of Parasitology, 101, 94–97. DOI: CrossrefGoogle Scholar

  • Douëllou L. 1992. A survey of fish parasites in Lake Kariba, Zimbabwe. University of Zimbabwe Lake Kariba Research Station Bulletin 1/92Google Scholar

  • Douëllou L., Erlwanger K.H. 1993. Occurrence and distribution of two clinostomatid metacercariae in fishes from Lake Kariba, Zimbabwe. Transactions of the Zimbabwe Scientific Association, 66, 35–40Google Scholar

  • Douëllou L., Erlwanger K.H. 1994. Crustacean parasites of fishes in Lake Kariba, Zimbabwe, Preliminary Results. Hydrobiologia, 287, 233–242Google Scholar

  • Echi P.C., Ezenwaji H.M.G. 2009. The parasite fauna of characids’ (Osteichthyes: Characidae) Anambra River, Nigeria. African Journal of Ecology, 48, 1–4. DOI: CrossrefGoogle Scholar

  • Ergens R. 1969. The suitability of ammonium picrate-glycerin in preparing slides of lower Monogenoidea. Folia Parasitologica, 16, 320Google Scholar

  • Fomena A., Bouix G. 1997. Myxosporea (Protozoa: Myxozoa) of freshwater fishes in Africa: Keys to genera and species. Systematic Parasitology, 37, 161–178Google Scholar

  • Fomena A., Bouix G. 2000. Henneguya mbakaounsis sp.nov., Myxobolus nounensis sp. nov. and Myxobolus hydrocyni Kostoingue and Toguebaye, 1994, Myxosporea (Myxozoa) parasites of Centropomidae, Cichlidae and Characidae (Teleosts) of the Sanaga basin in Cameroon (Central Africa). Parasite, 7, 209–214. DOI: CrossrefGoogle Scholar

  • Food and Agricultural Organisation (FAO). 2002. The state of world fisheries and aquaculture. FAO, Rome, pp. 135Google Scholar

  • Grankoto A., Pampoulie C., Marques A., Sakiti G.N., Dramane K.L. 2003. Infection patterns of Myxobolus heterospora in two Tilapia species (Teleostei: Cichlidae) and its potential effects. Diseases of Aquatic Organisms, 55, 125–131Google Scholar

  • Guégan J.F., Lamber T.A., Birgi É. 1988. Some observations on the branchial parasitism from characid fishes, genus Hydrocynus in West Africa. Description of a new species, Annulotrema pikoides n. sp. (Monogenea, Ancyrocephalidae) from Hydrocynus vittatus (Castelnau, 1861). Annales de Parasitologie Humaine et Comparée, 63, 91–98Google Scholar

  • Hecht T., Endemann F. 1998. The impact of parasites, infections and diseases on the development of aquaculture in sub-Sahara Africa. Journal of Applied Ichthyology, 14, 213–221. DOI: CrossrefGoogle Scholar

  • Junker K., Boomker J., Booyse D.G. 1998. Pentastomid infections in Cichlid fishes in the Kruger National Park and the description of the infective larva of Subtriquetra rileyi n. sp. Onderstepoort Journal of Veterinary Research, 65, 159–67Google Scholar

  • Khalil L.F. 1971. Checklist of helminth parasites of African freshwater fishes. Technical communication 42 of the Commonwealth Institute of Helminthology. Commonwealth Agricultural Bureau, Farnham Royal, UKGoogle Scholar

  • Kostoïngue E.B., Toguebaye., B.S. 1994. Le genre Myxobolus (Myxozoa, Myxosporea) chez poissons d’eau douce du Tchad avec la description de trois nouvelles espèces. Bulletin Institut Fondamental Afrique Noire Ch. A. Diop, Dakar, 47, 63–71Google Scholar

  • Kostoïngue B., Diebakate C., Faye N., Toguebaye B.S. 2001. Presence of Myxosporidae (Myxozoa : Myxosporea) of the genus Henneguya Thelohan, 1892 in freshwater fishes from Chad (Central Africa). Acta Protozoologica, 40, 117–123Google Scholar

  • Kuchta R., Burianova A., Jirku M., deChambrier A., Oros M., Brabec J., Scholz T. 2012. Bothriocephalidean tapeworms (Cestoda) of freshwater fish in Africa, including erection of Kirstenella n. gen. and description of Tetracampos martinae n. sp. Zootaxa, 3309, 1–35Google Scholar

  • Lasee B.A. 1995. Introduction to Fish Health Management. U.S. Fish and Wildlife Service, La Crosse Fish Health Center, Onalaska, Wisconsin, USAGoogle Scholar

  • Luus-Powell W.J., Jooste A., Junker K. 2008. Pentastomid parasites in fish in the Olifants and Incomati river systems, South Africa. Onderstepoort Journal of Veterinary Research, 75, 323–329. DOI: CrossrefGoogle Scholar

  • Marshall B.E. 2011. Fishes of Zimbabwe and their biology. Smithiana Monograph 3. The South African Institute of Aquatic Biodiversity, GrahamstownGoogle Scholar

  • Matejusová I., Koubková B., D’Amelio S., Cunningham C. 2001. Genetic characterization of six species of diplozoids (Monogenea; Diplozoidae). Parasitology, 123, 465–474. DOI: CrossrefGoogle Scholar

  • Mhlanga L., Nyikahadzoi K., Haller T. 2014. Fragmentation of Natural Resources Management: Experiences from Lake Kariba. PLAAS, South Africa.Google Scholar

  • Mouton A., Basson L., Impson D. 2001. Health status of ornamental freshwater fishes imported to South Africa: a pilot study. Aquarium Sciences and Conservation 3, 313–319Google Scholar

  • Munro J.L. 1967. The food of a community of East African freshwater fishes. Journal of Zoology, 151, 389–415. DOI: CrossrefGoogle Scholar

  • Otachi E.O., Szostakowska B., Jirsa F., Fellner-Frank C. 2015. Parasite communities of the elongate tigerfish Hydrocynus forskahlii (Cuvier 1819) and redbelly tilapia Tilapia zillii (Gervais 1848) from Lake Turkana, Kenya: influence of host sex and size. Acta Parasitologica, 60, 9–20. DOI: CrossrefGoogle Scholar

  • Paperna I. 1973. New species of Monogenea (Vermes) from African freshwater fish. A Preliminary Report. Revue de Zoologie et de Botanique Africaines, 87, 505–518Google Scholar

  • Paperna I. 1979. Monogenea of inland water fish in Africa. Musee Royal de l’Afrique Centrale, Tervuren Belgique, Annales, Ser. IN-8, Science Zoologiques, No. 226Google Scholar

  • Paperna I. 1980. Parasites, infections and diseases of fish in Africa. CIFA Technical paper No.7. FAO, Rome, Italy. pp.216Google Scholar

  • Paré J.A. 2008. An overview of pentastomiasis in reptiles and other vertebrates. Journal of Exotic Pet Medicine, 17, 285–294. DOI: CrossrefGoogle Scholar

  • Piasecki W. 1993. Comparative morphology of the three Lamproglena (Copepoda, Cyclopoida, Lernaeidae) described by Von Nordmann, based on re-examination of the types. Mitteilungen aus dem Zoologischen Museum in Berlin, 69, 307–315 DOI: CrossrefGoogle Scholar

  • Price C.E., Peebles H.E., Bamford T. 1969. The monogenean parasites of African fishes: IV. Two new species from South African hosts. Revue de Zoologie et de Botanique Africaines, 79, 117–124Google Scholar

  • Reed C.C., Basson L., Van As L.L. 2002. Myxobolus species (Myxozoa), parasites of fishes in the Okavango River and Delta, Botswana, including descriptions of two new species. Folia Parasitologica, 49, 81–88Google Scholar

  • Revenga C., Murray S., Abramovitz J., Hammond A. 1998. Waterbeds of the World: Ecological value and Vulnerability, World Resources Institute. Washington DC, USAGoogle Scholar

  • Roberts L.S., Janovy J. 1996. Foundations of Parasitology. Brown, WC, Dubuque, USA, pp.659Google Scholar

  • Smith S., Schwarz M. 2009. Commercial fish and Shellfish Technology Fact Sheet: Dealing with Trichodina and Trichodina-like species. Virginia Cooperative Extension Publication 600-205Google Scholar

  • Shamsi S., Norman R., Gasser R., Beveridge I. 2009. Genetic and morphological evidences for the existence of sibling species within Contracaecum rudolphii (Hartwich, 1964) (Nematoda: Anisakidae) in Australia. Parasitology Research, 105, 529–538. DOI CrossrefGoogle Scholar

  • Steyn G.J., Gagiano C.L., Deacon A.R., du Preez H.H. 1996. Notes on the induced reproduction and development of the tigerfish, Hydrocynus vittatus (Characidae) embyros and larvae. Environmental Biology of Fishes, 47, 387–398. DOI: CrossrefGoogle Scholar

  • Thorstad E.B., Hay C.J., Næsje T.F., Chanda B., ∅kland F. 2002. Movements and habitat utilisation of tigerfish (Hydrocynus vittatus) in the Upper Zambezi River. Implications for fisheries management. NINA Project Report 19. pp.28Google Scholar

  • XU D.H., Shoemaker C.A., Klesius P.H. 2007. Evaluation of the link between gyrodactylosis and streptococcosis of Nile tilapia, Oreochromis niloticus (L.). Journal of Fish Diseases, 30, 233–238Google Scholar

  • Zimmermann F. 1923. Processing of parasitic copepods of fishes. Denkschriften der Akadademie der Wissenschaften Wien, mathematisch-naturwissenschaftliche, 98, 101–111Google Scholar

About the article

Received: 2015-12-03

Revised: 2016-04-17

Accepted: 2016-04-19

Published Online: 2016-07-21

Published in Print: 2016-09-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0082.

Export Citation

© W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in