Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 4 (Dec 2016)

Issues

Tranmission pattern differences of miracidia and cercariae larval stages of digenetic trematode parasites

Michael R. Zimmermann
  • Corresponding author
  • Department of Biology, Shenandoah University, Winchester, Virginia 22625, United States of America
  • Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kyle E. Luth
  • Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerald W. Esch
  • Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-22 | DOI: https://doi.org/10.1515/ap-2016-0095

Abstract

Digenetic trematodes have complex life cycles involving multiple hosts and free-living larval stages. Some species have 2 lar-val stages that infect snails, with miracidia and cercariae using these molluscs as first and second intermediate hosts, respec-tively. Although both larval stages may infect the same snail species, this is accomplished using different chemical cues and may be influenced by different biotic and abiotic factors. Significant differences in the infection patterns of these parasitic stages regarding host size and density were observed in 2 separate field studies. The prevalence of sporocysts/rediae and mean abundance of Echinostoma spp. metacercariae infection were positively correlated with host size, while the prevalence of Echinostoma spp. cercariae infection was positively correlated with host density across 5 different pulmonate snail species. Larger snails within a given species tend to be older and the increased exposure time may be responsible for the positive correlations with host size. Additionally, infection by miracidia in more vagile snail hosts was influenced by trematode species richness at a sample site, which may be attributed to increased encounter rate as a result of increased movement by the snail hosts. Echinostoma spp. metacercariae prevalence was influenced by host density, possibly due to high abundances of larval clones and their response to more generalized chemical cues attributed to low host specificity by cercariae. Although they can infect the same gastropod hosts, miracidia and cercariae infection are dependent on different factors at both the individual and population level of their snail hosts.

Keywords: Trematode; miracidia; cercariae; Echinostoma; snail; ecology

References

  • Anderson R.M., Mercer J.G., Wilson R.A., Carter N.P. 1982. Trans-mission of Schistosoma mansoni from man to snail: Experimental studies of miracidial survival and infectivity in relation to larval age, water temperature, host size and host age. Par-asitology, 85, 339–360. CrossrefGoogle Scholar

  • Boss C.N., Laman T.G., Blankespoor H.D. 1984. Dispersal move-ments of four species of pulmonate and operculate snails in Douglas Lake, Michigan. The Nautilus, 98, 80–83Google Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitol-ogy meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology, 83, 575–583. CrossrefGoogle Scholar

  • Byers J.E., Blakeslee A.M.H., Linder E., Cooper A.B., Maguire T.J. 2008. Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail. Ecology, 89, 439–451. CrossrefGoogle Scholar

  • Campbell R.A. 1997. Host-finding behavior of Cotylurus flabelliformis (Trematoda: Strigeidae) cercariae for snail hosts. Folia Parasitologica, 44, 199–204Google Scholar

  • Carter N.P., Anderson R.M., Wilson R.A. 1982. Transmission of Schistosoma mansoni from man to snail: Laboratory studies on the influence of snail and miracidial densities on trans-mission success. Parasitology, 85, 361–372. CrossrefGoogle Scholar

  • Charnov E., Orians G., Hyatt K. 1976. Ecological implications of re-source depression. American Naturalist, 110, 247–259Google Scholar

  • Criscione C.D., Blouin M.S. 2007. Minimal selfing, few clones, and no among-host genetic structure in a hermaphroditic parasite with asexual larval propagation. Evolution, 60, 553–562. CrossrefGoogle Scholar

  • Detwiler J.T., Minchella D.J. 2009. Intermediate host availability masks the strength of experimentally-derived colonisation patterns in echinostome trematodes. International Journal for Parasitology, 39, 585–590. CrossrefGoogle Scholar

  • Detwiler J.T. 2010. The molecular ecology of echinostome trema-todes: Elucidating the phylogenetics and transmission dynamics of a freshwater helminth parasite. Ph.D. Thesis, Purdue University, West Lafayette, Indiana, USA

  • Dillon R.T. 2000. Gastropod autoecology. In: Dillon R. T. (Ed.). The ecology of freshwater molluscs, Cambridge University Press, Cambridge, UK, pp. 57–116Google Scholar

  • Esch G.W., Fernandez J.C. 1994. Snail-trematode interactions and parasite community dynamics in aquatic systems: A review. The American Midland Naturalist, 131, 209–237. CrossrefGoogle Scholar

  • Esch G.W., Barger M.A., Fellis K.J. 2002. The transmission of digenetic trematodes: Style, elegance, complexity. Integrative Comparative Biology, 42, 304–312. CrossrefGoogle Scholar

  • Esteban J.C., Munoz-Antoli C. 2009. Echinostomes: Systematics and life cycles. In: Fried B.R., and Toledo R. (Eds.) The biology of echinostomes: From the molecule to the community, Springer, LLC, New York, New York, pp. 1–34Google Scholar

  • Evans N.A., Whitfield P.J., Dobson A.P. 1981. Parasite utilization of a host community: The distribution and occurrence of metacercarial cysts of Echinoparyphium recurvatum (Digenea: Echinostomatidae) in seven species of molluscs at Harting Pond, Sussex. Parasitology, 83, 1–12. CrossrefGoogle Scholar

  • Faltynkova A., Nasincova V., Kablaskova L. 2007a. Larval trema-todes (Digenea) of planorbid snails (Gastropoda: Pulmonata) in central Europe: A survey of species and key to their identification. Systematic Parasitology, 69, 155–178. CrossrefGoogle Scholar

  • Faltynkova A., Nasincova V., Kablaskova L. 2007b. Larval trema-todes (Digenea) of the great pond snail Lymnaea stagnalis (L.), (Gastropoda, Pulmonata) in central Europe: A survey of species and key to their identification. Parasite, 14, 39–51. CrossrefGoogle Scholar

  • Fenton A., Fairbairn J.P., Norman R., Hudson P.J. Parasite transmission: Reconciling theory and reality. Journal of Animal Ecology, 71, 893–905. CrossrefGoogle Scholar

  • Fernandez J., Esch G.W. 1991a. Guild structure of larval trematods in the snail Helisoma anceps: Patterns and processes at the individual host level. Journal of Parasitology, 77, 528–539. CrossrefGoogle Scholar

  • Fernandez J., Esch G.W. 1991b. The component community structure of larval trematodes in the pulmonate snail Helisoma anceps. Journal of Parasitology, 77, 540–550. CrossrefGoogle Scholar

  • Haas W. 2003. Parasitic worms: Strategies of host finding, recognition and invasion. Zoology, 106, 349–364. CrossrefGoogle Scholar

  • Haas W., Korner M., Hutterer E., Wegner M., Haberl B.. 1995. Find-ing and recognition of the snail intermediate hosts by 3 species of echinostome cercariae. Parasitology, 110, 133–142. CrossrefGoogle Scholar

  • Haberl B., Korner M., Spengler Y., Hertel J., Kalbe M., Haas W. 2000. Host-finding in Echinostoma caproni: Miracidia and cercariae use different signals to identify the same snail species. Parasitology, 120, 479–486Google Scholar

  • Hechinger R.F., Wood A.C., Kuris A.M. 2011. Social organization in a flatworm: Trematode parasites form soldier and reproductive castes. Proceedings of the Royal Society of London, 278, 656–665. CrossrefGoogle Scholar

  • Johnson P.T.J., Preston D.L., Hoverman J.T., Henderson J.S., Paull S.H., Richgels K.L.D., Redmond M.D. 2012. Species diversity re-duces parasite infection through cross-generation effects on host abundance. Ecology, 93, 56–64. CrossrefGoogle Scholar

  • Jokela J., Lively C.M. 1995. Spatial variation in infection by digenetic trematodes in a population of freshwater snails (Pota-mopyrgus antipodarum). Oecologia, 103, 509–517. CrossrefGoogle Scholar

  • Kalbe M., Haberl B., Haas W. 2000. Snail host finding by Fasciola hepatica and Trichobilharzia ocellata: Compound analysis of “miracidia-attracting glycoproteins.” Experimental Parasitology, 96, 231–242. CrossrefGoogle Scholar

  • Kuris A.M., Warren J. 1980. Echinostome cercarial penetration and metacercarial encystment as mortality factors for a second in-termediate host, Biomphalaria glabrata. Journal of Parasitology, 66, 630–635. CrossrefGoogle Scholar

  • Kuris A.M., Lafferty K.D. 1994. Community structure: Larval trematodes in snail hosts. Annual Review of Ecology and Systematics, 25, 189–217Google Scholar

  • Loy C., Haas W. 2001. Prevalence of cercariae from Lymnaea stagnalis snails in a pond system in Southern Germany. Parasitology Research, 87, 878–882. CrossrefGoogle Scholar

  • McCarthy A.M. 1990. The influence of second intermediate host dis-persion pattern upon the transmission of cercariae of Echinoparyphium recurvatum (Digenea: Echinostomatidae). Parasitology, 101, 43–47. CrossrefGoogle Scholar

  • McCarthy A.M. 1999a. Photoperiodic cercarial emergence patterns of the digeneans Echinoparyphium recurvatum and Plagiorchis sp. from a mixed infection in Lymnaea peregra. Journal of Helminthology, 73, 59–62. CrossrefGoogle Scholar

  • McCarthy A.M. 1999. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurva-tum (Digenea: Echinosomatidae). Parasitology, 118, 383–388Google Scholar

  • Morley N.J. 2012. Thermodynamics of miracidial survival and me-tabolism. Parasitology, 139, 1640–1651. CrossrefGoogle Scholar

  • Morley N.J., Crane M., Lewis J.W. 2004a. Influence of cadmium ex-posure on the incidence of first intermediate host encystment by Echinoparyphium recurvatum cercariae in Lymnaea peregra. Journal of Helminthology, 78, 329–332. CrossrefGoogle Scholar

  • Morley N.J., Lewis J.W., Adam M.E. 2004b. Metacercarial utilization of a naturally infected single species (Lymnaea peregra) snail community by Echinoparyphium recurvatum. Journal of Helminthology, 78, 51–56. CrossrefGoogle Scholar

  • Morley N.J., Lewis J.W. 2015. Thermodynamics of trematode infec-tivity. Parasitology, 142, 585–597. CrossrefGoogle Scholar

  • Muñoz-Antoli C., Toledo R., Esteban J. 2000. The life cycle and transmission dynamics of the larval stages of Hypoderaeum conoideum. Journal of Helminthology, 74, 165–172. CrossrefGoogle Scholar

  • Muñoz-Antoli C., Trelis C.M., Espert A., Toledo R., Esteban J.G. 2003. Interactions related to non-host snails in the host-finding process of Euparyphium albuferensis and Echinostoma friedi (Trematoda: Echinostomatidae) miracidia. Parasitology Research, 91, 353–356. CrossrefGoogle Scholar

  • Negron-Aponte H., Jobin W.R. 1977. Guidelines for spacing and timing of samples to detect populations of Schistosoma mansoni cercariae in the field. International Journal for Parasitology, 7, 123–126. CrossrefGoogle Scholar

  • Rauch G., Kalbe M., Reusch T.B. H. How a complex life cycle can improve a parasite’s sex life. Journal of Evolutionary Biology, 18, 1069–1075. CrossrefGoogle Scholar

  • Sandland G.J., Goater C.P., Danylchuk A.J. Population dynamics of Ornithodiplostomum ptychocheilus metacercariae in fathead minnows (Pimephales promelas) from four northern Alberta lakes. Journal of Parasitology, 87, 744–748. CrossrefGoogle Scholar

  • Sapp K.K., Esch G.W. 1994. The effects of spatial and temporal het-erogeneity as structuring forces for parasite communities in Helisoma anceps and Physa gyrina. American Midland Naturalist, 132, 91–103. CrossrefGoogle Scholar

  • Schmidt K.A., B. Fried. 1996. Emergence of cercariae of Echinostoma trivolvis from Helisoma trivolvis under different conditions. Journal of Parasitology, 82, 674–676. CrossrefGoogle Scholar

  • Sorensen R.E., Minchella D.J. 1998. Parasite influences on host life history: Echinostoma revolutum parasitism of Lymnaea elodes snails. Oecologia, 115, 188–195. CrossrefGoogle Scholar

  • Toledo R., Muñoz-Antoli C., Perez M., Esteban J.G. 1999. Survival and infectivity of Hypoderaeum conoideum and Euparyphium albuferensis cercariae under laboratory conditions. Journal of Helmintology, 73, 177–182. CrossrefGoogle Scholar

  • Toledo R., Espert A., Carpena I., Muñoz-Antoli C., Esteban J.G. 2003. An experimental study of the reproductive success of Echinostoma friedi (Trematoda: Echinostomatidae) in the golden hamster. Parasitology, 126, 433–441. CrossrefGoogle Scholar

  • Toledo R., Carpena I., Espert A., Sotillo J., Muñoz-Antoli C., Este-ban J.G. 2006. Transmission success of Echinostoma friedi (Trematoda: Echinostomatidae) in rats. Journal of Parasitology, 92, 16–20. CrossrefGoogle Scholar

  • Upatham E.S. 1972. Exposure or caged Biomphalaria glabrata (Say) to investigate dispersion of miracidia of Schistosoma mansoni Sambon in outdoor habitats in St. Lucia. Journal of Helminothology, 46, 297–306Google Scholar

  • Upatham E.S. 1973. Location of Biomphalaria glabrata (Say) by miracidia of Schistosoma mansoni Sambon in natural standing and running waters on the West Indian Island of St. Lucia. International Journal for Parasitology, 3, 289–297. CrossrefGoogle Scholar

  • Upatham E.S. 1974. Infectivity of Schistosoma mansoni cercariae in natural St. Lucian habitats. Annals of Tropical Medicine & Parasitology, 68, 235–236. CrossrefGoogle Scholar

  • Williams J.A., Esch G.W. 1991. Infraand component community dynamics in the pulmonate snail Helisoma anceps, with special emphasis on the hemiurid trematode Halipegus occidualis. Journal of Parasitology, 77, 246–253. CrossrefGoogle Scholar

  • Wilson R.A., Taylor S.L. 1978. The effect of variations in host and parasite density on the level of parasitization of Lymnaea trun-catula by Fasciola hepatica. Parasitology, 76, 91–98. CrossrefGoogle Scholar

  • Zimmermann M.R., Luth K.E., Esch G.W. 2014a. Differences in snail ecology lead to infection pattern variation of Echinos-toma spp. larval stages. Acta Parasitologica, 59, 502–509. CrossrefGoogle Scholar

  • Zimmermann M.R., Luth K.E., Esch G.W. 2014b. Microhabitat dif-ferences surrounding a pond affects the distribution of trematode parasites among a pulmonate snail community. Helminthologia, 51, 301–308. CrossrefGoogle Scholar

About the article

Received: 2016-01-11

Revised: 2016-05-16

Accepted: 2016-06-13

Published Online: 2016-10-22

Published in Print: 2016-12-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0095.

Export Citation

© 2016 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

[1]
Michael R. Zimmermann, Kyle E. Luth, and Gerald W. Esch
Acta Parasitologica, 2017, Volume 62, Number 3

Comments (0)

Please log in or register to comment.
Log in