Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 61, Issue 4 (Dec 2016)

Issues

Development of a rapid and reliable assay for in vitro determination of compound cidality against the asexual stages of Plasmodium falciparum

Pavithra Viswanath
  • Corresponding author
  • Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4 Street, San Francisco, California 94143, United States of America
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sapna Morayya
  • Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4 Street, San Francisco, California 94143, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nikhil Rautela
  • Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4 Street, San Francisco, California 94143, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Achyut Sinha
  • Department of Radiology and Biomedical Imaging, University of California San Francisco, 1700 4 Street, San Francisco, California 94143, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-10-24 | DOI: https://doi.org/10.1515/ap-2016-0115

Abstract

The pace of anti-malarial drug discovery is often impeded due to the lack of tools to determine the cidality of compounds in vitro. An anti-malarial compound must have a cidal mode of action, i.e. kill parasites, in order to quickly reduce parasite load. A static compound that merely inhibits growth must be identified early on in the discovery cascade. In this paper, we describe a high-throughput fluorescent assay for determination of the cidality of an anti-malarial compound. The assay works on the principle that cultures treated with a static compound will exhibit re-growth while treatment with a cidal compound leads to a marked reduction in parasite number. Parasite cultures are treated with the drug for 48 or 72 h following which the drug is washed off. Cultures are allowed to recover in drug-free media for 72 h and DNA content estimated using the fluorescent dye SyBR Green I. Following estimation of IC50 and IC99 values, we find that the IC99/IC50 ratio is a reliable indicator of the cidality of a compound. Cidal compounds like artemisinin and chloroquine display an IC99/IC50 ratio <5 while the ratio for a static compound like atovaquone is <5. This correlation holds true for various anti-malarial drugs with known modes of action. Importantly, the IC99/IC50 ratio drops to <5 when a compound becomes cidal in action with longer duration of treatment. The assay is robust, reliable and provides a fast and effective means for prioritizing cidal compounds for progression along the drug discovery cascade.

Keywords: Anti-malarial; cidality; mode of action; malaria; drug discovery; SyBR Green IIntroduction

References

  • Alin M.H., Bjorkman A. 1994. Concentration and time dependency of artemisinin efficacy against Plasmodium falciparum in vitro. The American Journal of Tropical Medicine and Hygiene, 50, 771–776Google Scholar

  • Anthony M.P., Burrows J.N., Duparc S., Moehrle J.J., Wells T.N. 2012. The global pipeline of new medicines for the control and elimination of malaria. Malaria Journal, 11, 316. CrossrefGoogle Scholar

  • Bahamontes-Rosa N., Rodriguez-Alejandre A., Gonzalez-del-Rio R., Garcia-Bustos J.F., Mendoza-Losana A. 2012. A new molecular approach for cidal vs static antimalarial determination by quantifying mRNA levels. Molecular and Biochemical Parasitology, 181, 171–177. CrossrefGoogle Scholar

  • Basco L.K., Marquet F., Makler M.M., Le Bras J. 1995a. Plasmodium falciparum and Plasmodium vivax: lactate dehydrogenase activity and its application for in vitro drug susceptibility assay. Experimental Parasitology, 80, 260–271Google Scholar

  • Basco L.K., Ramiliarisoa O., Le Bras J. 1994. In vitro activity of pyrimethamine, cycloguanil, and other antimalarial drugs against African isolates and clones of Plasmodium falciparum. The American Journal of Tropical Medicine and Hygiene, 50, 193–199Google Scholar

  • Basco L.K., Ramiliarisoa O., Le Bras J. 1995b. In vitro activity of atovaquone against the African isolates and clones of Plasmodium falciparum. The American Journal of Tropical Medicine and Hygiene, 53, 388–391Google Scholar

  • Burrows J.N., Chibale K., Wells T.N. 2011a. The state of the art in anti-malarial drug discovery and development. Current Topics in Medicinal Chemistry, 11, 1226–1254Google Scholar

  • Burrows J.N., Leroy D., Lotharius J., Waterson D. 2011b. Challenges in antimalarial drug discovery. Future Medicinal Chemistry, 3, 1401–1412. CrossrefGoogle Scholar

  • Burrows J.N., van Huijsduijnen R.H., Mohrle J.J., Oeuvray C., Wells T.N. 2013. Designing the next generation of medicines for malaria control and eradication. Malaria Journal, 12, 187. CrossrefGoogle Scholar

  • Dahl E.L., Rosenthal P.J. 2007. Multiple Antibiotics Exert Delayed Effects against the Plasmodium falciparum Apicoplast. Antimicrobial Agents and Chemotherapy, 51, 3485–3490Google Scholar

  • Diagana T.T. 2015. Supporting malaria elimination with 21st century antimalarial agent drug discovery. Drug Discovery Today, 20, 1265–1270. CrossrefGoogle Scholar

  • Dondorp A.M., Desakorn V., Pongtavornpinyo W., Sahassananda D., Silamut K., Chotivanich K., Newton P.N., Pitisuttithum P., Smithyman A.M., White N.J., Day N.P. 2005. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoSMedicine, 2, e204. CrossrefGoogle Scholar

  • Guiguemde W.A., Shelat A.A., Garcia-Bustos J.F., Diagana T.T., Gamo F.J., Guy R.K. 2012. Global phenotypic screening for antimalarials. Chemistry & Biology, 19, 116–129. CrossrefGoogle Scholar

  • Lambros C., Vanderberg J.P. 1979. Synchronization of Plasmodium falciparum erythrocytic stages in culture. Journal of Para-sitology, 65, 418–420Google Scholar

  • Le Manach C., Scheurer C., Sax S., Schleiferbock S., Cabrera D.G., Younis Y., Paquet T., Street L., Smith P., Ding X.C., Waterson D., Witty M.J., Leroy D., Chibale K., Wittlin S. 2013. Fast in vitro methods to determine the speed of action and the stagespecificity of anti-malarials in Plasmodium falciparum. Malaria Journal, 12, 424. CrossrefGoogle Scholar

  • Murray C.J., Ortblad K.F., Guinovart C., Lim S.S., Wolock T.M., Roberts D.A., et al. 2014. Global, regional, and national incidence and mortality for HIV, tuberculosis, and malaria during 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 384, 1005–1070. CrossrefWeb of ScienceGoogle Scholar

  • Murray C.J., Rosenfeld L.C., Lim S.S., Andrews K.G., Foreman K.J., Haring D., Fullman N., Naghavi M., Lozano R., Lopez A.D. 2012. Global malaria mortality between 1980 and 2010: a sys tematic analysis. Lancet, 379, 413–431. CrossrefGoogle Scholar

  • Newby G., Bennett A., Larson E., Cotter C., Shretta R., Phillips A.A., Feachem R.G. 2016. The path to eradication: a progress report on the malaria-eliminating countries. Lancet, 387, 1775–1784. CrossrefGoogle Scholar

  • Nilsen A., LaCrue A.N., White K.L., Forquer I.P., Cross R.M., Marfurt J., Mather M.W., Delves M.J., Shackleford D.M., Saenz F.E., Morrisey J.M., Steuten J., Mutka T., Li Y., Wirjanata G., Ryan E., Duffy S., Kelly J.X., Sebayang B.F., Zeeman A.M., Noviyanti R., Sinden R.E., Kocken C.H., Price R.N., Avery V.M., Angulo-Barturen I., Jimenez-Diaz M.B., Ferrer S., Herreros E., Sanz L.M., Gamo F.J., Bathurst I., Burrows J.N., Siegl P., Guy R.K., Winter R.W., Vaidya A.B., Charman S.A., Kyle D.E., Manetsch R., Riscoe M.K. 2013. Quinolone-3diarylethers: a new class of antimalarial drug. Science Translational Medicine, 5, 177ra137. CrossrefGoogle Scholar

  • Painter H.J., Morrisey J.M., Vaidya A.B. 2010. Mitochondrial electron transport inhibition and viability of intraerythrocytic Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 54, 5281–5287. CrossrefGoogle Scholar

  • Phillips M.A., Lotharius J., Marsh K., White J., Dayan A., White K.L., Njoroge J.W., El Mazouni F., Lao Y., Kokkonda S., Tomchick D.R., Deng X., Laird T., Bhatia S.N., March S., Ng C.L., Fidock D.A., Wittlin S., Lafuente-Monasterio M., Benito F.J., Alonso L.M., Martinez M.S., Jimenez-Diaz M.B., Bazaga S.F., Angulo-Barturen I., Haselden J.N., Louttit J., Cui Y., Sridhar A., Zeeman A.M., Kocken C., Sauerwein R., Dechering K., Avery V.M., Duffy S., Delves M., Sinden R., Ruecker A., Wickham K.S., Rochford R., Gahagen J., Iyer L., Riccio E., Mirsalis J., Bathhurst I., Rueckle T., Ding X., Campo B., Leroy D., Rogers M.J., Rathod P.K., Burrows J.N., Charman S.A. 2015. A long-duration dihydroorotate dehydrogenase inhibitor (DSM265) for prevention and treatment of malaria. Science Translational Medicine, 7, 296ra111. CrossrefGoogle Scholar

  • Rottmann M., McNamara C., Yeung B.K., Lee M.C., Zou B., Russell B., Seitz P., Plouffe D.M., Dharia N.V., Tan J., Cohen S.B., Spencer K.R., Gonzalez-Paez G.E., Lakshminarayana S.B., Goh A., Suwanarusk R., Jegla T., Schmitt E.K., Beck H.P., Brun R., Nosten F., Renia L., Dartois V., Keller T.H., Fidock D.A., Winzeler E.A., Diagana T.T. 2010. Spiroindolones, a potent compound class for the treatment of malaria. Science, 329, 1175–1180. CrossrefGoogle Scholar

  • Sanz L.M., Crespo B., De-Cozar C., Ding X.C., Llergo J.L., Burrows J.N., Garcia-Bustos J.F., Gamo F.J. 2012. P. falciparum in vitro killing rates allow to discriminate between different antimalarial mode-of-action. PLoS One, 7, e30949. CrossrefGoogle Scholar

  • Trager W., Jensen J.B. 1976. Human malaria parasites in continuous culture. Science, 193, 673–675Google Scholar

  • Visser B.J., van Vugt M., Grobusch M.P. 2014. Malaria: an update on current chemotherapy. Expert Opinion on Pharmacotherapy, 15, 2219–2254. CrossrefGoogle Scholar

  • Wells T.N., Alonso P.L., Gutteridge W.E. 2009. New medicines to improve control and contribute to the eradication of malaria. Nature Reviews Drug Discovery, 8, 879–891. CrossrefGoogle Scholar

  • White N.J. 1997. Assessment of the pharmacodynamic properties of antimalarial drugs in vivo. Antimicrobial Agents and Chemotherapy, 41, 1413–1422Google Scholar

  • White N.J., Pukrittayakamee S., Phyo A.P., Rueangweerayut R., Nosten F., Jittamala P., Jeeyapant A., Jain J.P., Lefèvre G., Li R., Magnusson B., Diagana T.T., Leong F.J. 2014. Spiroindolone KAE609 for Falciparum and Vivax Malaria. New England Journal of Medicine, 371, 403–410. CrossrefGoogle Scholar

  • WHO 2015. World Malaria Report 2015. http://www.who.int/malaria/publications/world-malaria-report-2015/en/

About the article

Received: 2016-06-01

Revised: 2016-07-18

Accepted: 2016-08-04

Published Online: 2016-10-24

Published in Print: 2016-12-01


Conflict of Interests

Authors declares no conflict of interests.


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2016-0115.

Export Citation

© 2016 W. Stefañski Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in