Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2018: 1.00

SCImago Journal Rank (SJR) 2018: 0.500
Source Normalized Impact per Paper (SNIP) 2018: 0.664

More options …
Volume 62, Issue 1


The first successful report of the in vitro life cycle of Chinese Leishmania: the in vitro conversion of Leishmania amastigotes has been raised to 94% by testing 216 culture medium compound

Jiao Li
  • Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Zhi-Wan Zheng
  • Department of Veterinary Medicine, Rongchang Campus, Southwest University, Rongchang, Chongqing 402460, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gayathri Natarajan
  • Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 42310, United States of America
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Qi-Wei Chen
  • Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Da-Li Chen
  • Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Jian-Ping Chen
  • Corresponding author
  • Department of Parasitology, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
  • Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, 610041, China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2016-12-28 | DOI: https://doi.org/10.1515/ap-2017-0018


Chinese Leishmania isolate MHOM/CN/90/SC10H2 (L. H2), which was obtained from the spinal cords of patients from the Sichuan province of China, is an uncharacterized, pathogenic species closely related to Leishmania tarentolae. The in vitro transformation rate of L. H2 promastigotes into amastigotes has not been studied. This study is the first to successfully define the in vitro life cycle of L. H2 by investigating the percent conversion of L.H2 promastigotes to amastigotes in vitro under 216 different culture conditions. The highest proportion of L. H2 amastigotes observed (94%) was significantly higher than that previously reported. After conversion, the axenic amastigotes remained viable as verified by the levels of stage-specific genes (Gp46, A2 and β-tubulin) detected by RT-PCR. Meanwhile, morphological and protein characterizations of these axenic amastigotes were carried out in order to confirm the successful conversion. Specific antibodies were only able to detect 46 kDa, 52 kDa and 75 kDa proteins in samples isolated from axenic amastigotes. Afterward, these converted axenic amastigotes were transformed into the promastigote form by altering the culture condition. These converted axenic promastigotes still have the ability to infect macrophages, and their morphology changed back to the amastigote form following infection. These findings will assist further investigations into the biological characteristics of the host-parasite relationship and the process of pathogenesis.

Keywords: Chinese Leishmania; life cycle; percent conversion; in vitro


  • Alcolea P.J., Alonso A., Gomez M.J., Gorostiaga A.S., Mercedes M.P., Eduardo G.P., et al. 2010. Temperature increase prevails over acidification in gene expression modulation of amastigote differentiation in Leishmania infantum. BioMed Central Genomics 11, 35. CrossrefGoogle Scholar

  • Almeida R., Gilmartin B.J., McCann S.H., Norrish A., Ivens A.C., Lawson D., et al. 2004. Expression profiling of the Leishmania life cycle: cDNA arrays identify developmentally regulated genes present but not annotated in the genome. Molecular and Biochemical Parasitology, 136, 87–100. CrossrefGoogle Scholar

  • Barak E., Amin-Spector S., Gerliak E., Goyard S., Holland N., Zilberstein D. 2005. Differentiation of Leishmania donovani in host-free system: analysis of signal perception and response. Molecular and Biochemical Parasitology, 141, 99–108. CrossrefGoogle Scholar

  • Bates P.A. 1933. Characterization of developmentally-regulated nucleases in promastigotes and amastigotes of Leishmania mexicana. Federation of European Microbiological Societies Microbiology Letters, 107, 53–58. CrossrefGoogle Scholar

  • Cao D.P., Chen D.L., Chen J.P., Liao L., Yang B.B., Hu X.S. 2012. Axenic culture and identification of amastigotes from Sichuan human strain of Chinese Leishmania isolates. Veterinary Parasitology, 183, 353–355. CrossrefGoogle Scholar

  • Cao D.P., Guo X.G., Chen D.L., Chen J.P. 2011. Species delimitation and phylogenetic relationships of Chinese Leishmania isolates reexamined using kinetoplast cytochrome oxidase II gene sequences. Parasitology Research, 109, 163–173. CrossrefGoogle Scholar

  • Cibrelus P., Precigout E., Sereno D., Carcy B., Lemestre J.L., Gorenflot A. 1999. Secreted antigens of the amastigote and promastigote forms of Leishmania infantum inducing a humoral response in humans and dogs. Parasite, 6, 121–129. CrossrefGoogle Scholar

  • Debrabant A., Joshi M.B., Pimenta P.F., Dwyer D.M. 2004. Generation of Leishmania donovani axenic amastigotes: their growth and biological characteristics. International Journal for Parasitology, 34, 205–217. CrossrefGoogle Scholar

  • Dias Costa J., Soares R., Cysne Finkelstein L., Corte-Real S., de Nazareth Meirelles M., Porrozzi R. 2009. Fast high yield of pure Leishmania (Leishmania) infantum axenic amastigotes and their infectivity to mouse macrophages. Parasitology Research, 105, 227–236. CrossrefGoogle Scholar

  • Doyle P.S., Engel J.C., Pimenta P.F., da Silva P.P., Dwyer D.M. 1991. Leishmania donovani: long-term culture of axenic amastigotes at 37. Experimental Parasitology, 73, 326–334. CrossrefGoogle Scholar

  • Garin Y.J., Meneceur P., Pratlong F., Dedet J.P., Derouin F., Lorenzo F. 2005. A2 gene of Old World cutaneous Leishmania is a single highly conserved functional gene. BioMed Central Infectious Diseases, 5, 18. CrossrefGoogle Scholar

  • Guan W., Cao D.P., Sun K., Xu J.N., Zhang J.R., Chen D.L., Chen J.P. 2012. Phylogenic analysis of Chinese Leishmania isolates based on small subunit ribosomal RNA (SSU rRNA) and 7 spliced leader RNA (7SL RNA). Acta Parasitologica, 57, 101–130. CrossrefGoogle Scholar

  • Hodgkinson V.H., Soong L., Duboise S.M., McMahon-Pratt D. 1996. Leishmania amazonensis: cultivation and characterization of axenic amastigote-like organisms. Experimental Parasitology, 83, 94–105. CrossrefGoogle Scholar

  • Hodgkinson V.H., Soong L., Duboise S.M., McMahon-Pratt D. 1996. Leishmania amazonensis: cultivation and characterization of axenic amastigote-like organisms. Experimental Parasitology, 83, 94–105. CrossrefGoogle Scholar

  • Jackson A.P., Vaughan S., Gull K. 2006. Comparative genomics and concerted evolution of β-tubulin paralogs in Leishmania spp. BioMed Central Genomics, 7, 137. CrossrefGoogle Scholar

  • Liu K., Zinker S., Argüello C., Salgado L.M. 2000. Isolation and analysis of a new developmentally regulated gene from amastigotes of Leishmania mexicana. Parasitology Research, 86, 140–150. CrossrefGoogle Scholar

  • McMahon-Pratt D., Traub-Cseko Y., Lohman K.L., Rogers D.D., Beverley S.M. 1992. Loss of the GP46/M-2 surface membrane glycoprotein gene family in the Leishmania braziliensis complex. Molecular and Biochemical Parasitology, 50, 151–160. CrossrefGoogle Scholar

  • McNicoll F., Drummelsmith J., Muller M., Madore E., Boilard N., Ouellette M., Papadopoulou B. 2006. A combined proteomic and transcriptomic approach to the study of stage differentiation in Leishmania infantum. Proteomics, 6, 3567–3581. DOI: 10.1002/pmic.200500853CrossrefGoogle Scholar

  • Mundodi V., Somanna A., Farrell P.J., Gedamu L. 2002. Genomic organization and functional expression of differentially regulated cysteine protease genes of Leishmania donovani complex. Gene, 282, 257–265. CrossrefGoogle Scholar

  • Pan A.A. 1984. Leishmania mexicana: serial cultivation of intracellular stages in a cell-free medium. Experimental Parasitology, 58, 72–80. CrossrefGoogle Scholar

  • Ramirez C.A., Requena J.M., Puerta C.J. 2013. Alpha tubulin genes from Leishmania braziliensis:genomic organization, gene structure and insights on their expression. BioMed Central Genomics, 14, 454. CrossrefGoogle Scholar

  • Rochette A., Raymond F., Corbeil J., Ouellette M., Papadopoulou B. 2009. Whole-genome comparative RNA expression profiling of axenic and intracellular amastigote forms of Leishmania infantum. Molecular and Biochemical Parasitology, 165, 32–47. CrossrefGoogle Scholar

  • Rodrigues Ide A., da Silva B.A., dos Santos A.L., Vermelho A.B., Alviano C.S., Dutra P.M., Rosa Mdo S. 2010. A new experimental culture medium for cultivation of Leishmania amazonensis: its efficacy for the continuous in vitro growth and differentiation of infective promastigote forms. Parasitology Research, 106, 1249–1252. CrossrefGoogle Scholar

  • Sun K., Guan W., Zhang J.G., Wang Y.J., Tian Y., Liao L., et al. 2012. Prevalence of canine leishmaniasis in Beichuan County, Sichuan, China and phylogenetic evidence for an undescribed Leishmania sp. in China based on 7SL RNA. Parasites & Vectors, 5, 75. CrossrefGoogle Scholar

  • Tavares J., Ouaissi A., Lin P.K., Tomas A., Cordeiro-da-Silva A. 2005. Differential effects of polyamine derivative compounds against Leishmania infantum promastigotes and axenic amastigotes. International Journal for Parasitology, 35, 637–646. CrossrefGoogle Scholar

  • Teixeira M.C., de Jesus Santos R., Sampaio R.B., Pontes-de-Carvalho L., dos-Santos W.L. 2002. A simple and reproducible method to obtain large numbers of axenic amastigotes of different Leishmania species. Parasitology Research, 88, 963–968. CrossrefGoogle Scholar

  • Visvesvara G.S., Garcia L.S. 2002. Culture of protozoan parasites. Clinlic Microbiology Reviews, 15, 327–328. CrossrefGoogle Scholar

  • Walker J., Vasquez J.J., Gomez M.A., Drummelsmith J., Burchmore R., Girard I., Ouellette M. 2006. Identification of Developmentally regulated proteins in Leishmania panamensis by proteome profiling of promastigotes and axenic amastigotes. Molecular and Biochemical Parasitology, 147, 64-73. DOI: 10.1016/j.molbiopara.2006.01.008CrossrefGoogle Scholar

  • Wheeler R.J., Gluenz E., Gull K. 2011. The cell cycle of Leishmania: morphogenetic events and their implications for parasite biology. Molecular Microbiology, 79, 647–662. CrossrefGoogle Scholar

  • WHO 2016. WHO to implement online epidemiological surveillance for leishmaniasis. World Health Organization, Neglected tropical diseases. http://www.who.int/neglected_diseases/news/WHO_implement_epidemiological_surveillance_leishmaniasis/en/

  • Yang B.B., Guo X.G., Hu X.S., Zhang J.G., Liao L., Chen D.L., Chen J.P. 2010. Species discrimination and phylogenetic inference of 17 Chinese Leishmania isolates based on internal transcribed spacer 1 (ITS1) sequences. Parasitology Research, 107, 1049–1065. CrossrefGoogle Scholar

  • Zeng J., Chen Q.W., Yu Z.Y., Zhang J.R., Chen D.L., Song C., et al. 2016. Regulation of intrinsic apoptosis in cycloheximidetreatedmacrophages by the Sichuan human strain of Chinese Leishmania isolates. Acta Tropica, 153, 101–110. CrossrefGoogle Scholar

  • Zhang C.Y., Lu X.J., Du X.Q., Jian J., Shu L., Ma Y. 2013. Phylogenetic and evolutionary analysis of Chinese Leishmania isolates based on multilocus sequence typing. PloS One, 8, e63124. CrossrefGoogle Scholar

  • Zhang W.W., Charest H., Ghedin E., Matlashewski G. 1996. Identification and overexpression of the A2 amastigote-specific protein in Leishmania donovani. Molecular and Biochemical Parasitology, 78, 79–90. CrossrefGoogle Scholar

  • Zhang W.W., Matlashewski G. 2001. Characterization of the A2-A2rel gene cluster in Leishmania donovani: involvement of A2 in visceralization during infection. Molecular Microbiololgy, 39, 935–948. CrossrefGoogle Scholar

  • Zilberstein D, 2008. Physiological and biochemical aspects of Leishmania development. In: (Eds P.J. Myler and N. Fassel) Leishmania after the genome. Caister Academic Press, Norfolk, pp. 107–113Google Scholar

  • Zilberstein D., Shapira M. 1994. The role of pH and temperature in the development of Leishmania parasites. Annual Review of Microbiology, 48, 449–470. CrossrefGoogle Scholar

About the article

Jiao Li and Zhi-Wan Zheng equally contributed to this paper and should be considered as first co-authors

Received: 2016-03-25

Revised: 2016-08-19

Accepted: 2016-10-17

Published Online: 2016-12-28

Published in Print: 2017-03-01

Competing interests: We have no competing interests.

Citation Information: Acta Parasitologica, Volume 62, Issue 1, Pages 154–163, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0018.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Patrícia de Almeida Machado, Monique Pacheco Duarte Carneiro, Ariane de Jesus Sousa-Batista, Francisco Jose Pereira Lopes, Ana Paula Cabral de Araujo Lima, Suzana Passos Chaves, Ana Carolina Rennó Sodero, and Herbert Leonel de Matos Guedes
Life Sciences, 2019, Volume 219, Page 163

Comments (0)

Please log in or register to comment.
Log in