Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 62, Issue 2


PCR denaturing gradient gel electrophoresis as a useful method to identify of intestinal bacteria flora in Haemaphysalis flava ticks

Tian-Yin Cheng
  • College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
  • Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan Province 410128, PR China
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Guo-Hua Liu
  • Corresponding author
  • College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
  • Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan Province 410128, PR China
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-18 | DOI: https://doi.org/10.1515/ap-2017-0034


Ticks are blood-sucking ectoparasites of great medical and veterinary significance that can transmit bacteria, protozoa, fungi and viruses, causing a variety of human and animal diseases worldwide. In the present study, the intestinal bacterial flora associated with Haemaphysalis flava ticks in different developmental stages were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE). Eleven distinct DGGE bands were found using PCR-DGGE method. Sequences analyses indicated that they belonged to Bacillus cereus, Candidatus rickettsia, Erwinia sp., Klebsiella pneumoniae, Pectobacterium carotovorum, Pseudomonas aeruginosa, Rickettsia peacockii, Rickettsia helvetica, Rickettsia slovaca, Staphylococcus simulans and Uncultured bacterium clone. Our find that the K. pneumoniae and P. aeruginosa isolates were presented in all H. flava ticks in different developmental stages. The present results indicated that zoonotic pathogens are present in H. flava ticks in Henan province, China. To our knowledge, this is the first report on intestinal bacterial flora associated with H. flava ticks in China.

Keywords: Haemaphysalis flava; Intestinal microbiota; DGGE; China


  • Dantas-Torres F., Chomel B.B., Otranto D. 2012. Ticks and tickborne diseases: a one health perspective. Trends Parasitology, 28, 437–446. CrossrefGoogle Scholar

  • Diuk-Wasser M.A., Vannier E., Krause P.J. 2016. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitology, 32, 30–42. CrossrefGoogle Scholar

  • Fang L.Q., Liu K., Li X.L., Liang S., Yang Y., Yao H.W., et al. 2015. Emerging tick-borne infections in mainland China: an increasing public health threat. Lancet Infectious Diseases, 15, 1467–1479. CrossrefGoogle Scholar

  • Gao X., Nasci R., Liang G. 2010. The neglected arboviral infections in mainland China. PLoS Neglect Tropical Diseases, 4, e624. CrossrefGoogle Scholar

  • Karbowiak G., Biernat B., Werszko J., Rychlik L. 2016. The transstadial persistence of tick-borne encephalitis virus in Dermacentor reticulatus ticks in natural conditions. Acta Parasitologica, 61, 201–203. CrossrefGoogle Scholar

  • Kušar D., Avguštin G. 2012. Optimization of the DGGE band identification method. Folia Microbiology, 57, 301–306. CrossrefGoogle Scholar

  • Liu L., Li L., Liu J., Hu Y., Liu Z., Guo L., Liu J. 2013. Coinfection of Dermacentor silvarum olenev (acari: ixodidae) by Coxiella-Like, Arsenophonus-like, and Rickettsia-like symbionts. Applied and Environment Microbiology, 79, 2450–2454. CrossrefGoogle Scholar

  • Liu Q., He B., Huang S.Y., Wei F., Zhu X.Q. 2014. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infectious Diseases, 14, 763–772. CrossrefGoogle Scholar

  • Moreno C.X., Moy F., Daniels T.J., Godfrey H.P., Cabello F.C. 2006. Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environment Microbiology, 8, 761–772Google Scholar

  • Opalińska P., Wierzbicka A., Asman M. 2016. The PCR and nested PCR detection of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Dermacentor reticulatus F. collected in a new location in Poland (Trzciel, Western Poland). Acta Parasitologica, 61, 849–854. CrossrefGoogle Scholar

  • Schabereiter G.C., Lubitz W., Rölleke S. 2003. Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. Journal of Microbiology Methods, 52, 251–260Google Scholar

  • Sun J., Lin J., Gong Z., Chang Y., Ye X., Gu S., et al.2015. Detection of spotted fever group Rickettsiae in ticks from Zhejiang Province, China. Experimental and Applied Acarology, 65, 403–411. CrossrefGoogle Scholar

  • Tveten A.K., Riborg A., Vadseth H.T. 2013. DGGE identification of microorganisms associated with Borrelia burgdorferi Sensu Lato-or Anaplasma phagocytophilum-infected Ixodes ricinus ticks from northwest Norway. International Journal of Microbiology, 2013, 805456. CrossrefGoogle Scholar

  • Tveten A.K., Sjåstad K.K. 2011. Identification of bacteria infecting Ixodes ricinus ticks by 16S rDNA amplification and denaturing gradient gel electrophoresis. Vector-Borne and Zoonotic Diseases, 11, 1329–1334. CrossrefGoogle Scholar

  • Van Overbeek L., Gassner F., Van Der Plas C.L., Kastelein P., Nunesda Rocha U., Takken W. 2008. Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. FEMS Microbiology Ecology, 66, 72–84. CrossrefGoogle Scholar

  • Wu X.B., Na R.H., Wei S.S., Zhu J.S., Peng H.J. 2014. Distribution of tick-borne diseases in China. Parasties & Vectors, 6, 119. CrossrefGoogle Scholar

  • Xu X.L., Cheng T.Y., Yang H., Yan F. 2015. Identification of intestinal bacterial flora in Rhipicephalus microplus ticks by conventional methods and PCR-DGGE analysis. Experimental and Applied Acarology, 66, 257–268. CrossrefGoogle Scholar

  • Xu X.L., Cheng T.Y., Yang H., Liao Z.H. 2016. De novo assembly and analysis of midgut transcriptome of Haemaphysalis flava and identification of genes involved in blood digestion, feeding and defending from pathogens. Infectious Genetics and Evolution, 38, 62–72. CrossrefGoogle Scholar

About the article

Received: 2016-06-14

Revised: 2016-12-21

Accepted: 2016-12-30

Published Online: 2017-04-18

Published in Print: 2017-06-01

Competing interestsThe authors declare that they have no competing interests.

Ethic statementAll animals were handled in strict accordance with the Good Animal Practice requirements of the Animal Ethics Procedures and Guidelines of the People’s Republic of China.

Citation Information: Acta Parasitologica, Volume 62, Issue 2, Pages 269–272, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0034.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Alessia Cappelli, Aida Capone, Matteo Valzano, Jovana Bozic, Silvia Preziuso, Priscilla Mensah, Ilaria Varotto Boccazzi, Laura Rinaldi, Guido Favia, and Irene Ricci
Vector-Borne and Zoonotic Diseases, 2018

Comments (0)

Please log in or register to comment.
Log in