Dantas-Torres F., Chomel B.B., Otranto D. 2012. Ticks and tickborne diseases: a one health perspective. Trends Parasitology, 28, 437–446. CrossrefGoogle Scholar
Diuk-Wasser M.A., Vannier E., Krause P.J. 2016. Coinfection by Ixodes Tick-Borne Pathogens: Ecological, Epidemiological, and Clinical Consequences. Trends Parasitology, 32, 30–42. CrossrefGoogle Scholar
Fang L.Q., Liu K., Li X.L., Liang S., Yang Y., Yao H.W., et al. 2015. Emerging tick-borne infections in mainland China: an increasing public health threat. Lancet Infectious Diseases, 15, 1467–1479. CrossrefGoogle Scholar
Gao X., Nasci R., Liang G. 2010. The neglected arboviral infections in mainland China. PLoS Neglect Tropical Diseases, 4, e624. CrossrefGoogle Scholar
Karbowiak G., Biernat B., Werszko J., Rychlik L. 2016. The transstadial persistence of tick-borne encephalitis virus in Dermacentor reticulatus ticks in natural conditions. Acta Parasitologica, 61, 201–203. CrossrefGoogle Scholar
Kušar D., Avguštin G. 2012. Optimization of the DGGE band identification method. Folia Microbiology, 57, 301–306. CrossrefGoogle Scholar
Liu L., Li L., Liu J., Hu Y., Liu Z., Guo L., Liu J. 2013. Coinfection of Dermacentor silvarum olenev (acari: ixodidae) by Coxiella-Like, Arsenophonus-like, and Rickettsia-like symbionts. Applied and Environment Microbiology, 79, 2450–2454. CrossrefGoogle Scholar
Liu Q., He B., Huang S.Y., Wei F., Zhu X.Q. 2014. Severe fever with thrombocytopenia syndrome, an emerging tick-borne zoonosis. Lancet Infectious Diseases, 14, 763–772. CrossrefGoogle Scholar
Moreno C.X., Moy F., Daniels T.J., Godfrey H.P., Cabello F.C. 2006. Molecular analysis of microbial communities identified in different developmental stages of Ixodes scapularis ticks from Westchester and Dutchess Counties, New York. Environment Microbiology, 8, 761–772Google Scholar
Opalińska P., Wierzbicka A., Asman M. 2016. The PCR and nested PCR detection of Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti in Dermacentor reticulatus F. collected in a new location in Poland (Trzciel, Western Poland). Acta Parasitologica, 61, 849–854. CrossrefGoogle Scholar
Schabereiter G.C., Lubitz W., Rölleke S. 2003. Application of broad-range 16S rRNA PCR amplification and DGGE fingerprinting for detection of tick-infecting bacteria. Journal of Microbiology Methods, 52, 251–260Google Scholar
Sun J., Lin J., Gong Z., Chang Y., Ye X., Gu S., et al.2015. Detection of spotted fever group Rickettsiae in ticks from Zhejiang Province, China. Experimental and Applied Acarology, 65, 403–411. CrossrefGoogle Scholar
Tveten A.K., Riborg A., Vadseth H.T. 2013. DGGE identification of microorganisms associated with Borrelia burgdorferi Sensu Lato-or Anaplasma phagocytophilum-infected Ixodes ricinus ticks from northwest Norway. International Journal of Microbiology, 2013, 805456. CrossrefGoogle Scholar
Tveten A.K., Sjåstad K.K. 2011. Identification of bacteria infecting Ixodes ricinus ticks by 16S rDNA amplification and denaturing gradient gel electrophoresis. Vector-Borne and Zoonotic Diseases, 11, 1329–1334. CrossrefGoogle Scholar
Van Overbeek L., Gassner F., Van Der Plas C.L., Kastelein P., Nunesda Rocha U., Takken W. 2008. Diversity of Ixodes ricinus tick-associated bacterial communities from different forests. FEMS Microbiology Ecology, 66, 72–84. CrossrefGoogle Scholar
Wu X.B., Na R.H., Wei S.S., Zhu J.S., Peng H.J. 2014. Distribution of tick-borne diseases in China. Parasties & Vectors, 6, 119. CrossrefGoogle Scholar
Xu X.L., Cheng T.Y., Yang H., Yan F. 2015. Identification of intestinal bacterial flora in Rhipicephalus microplus ticks by conventional methods and PCR-DGGE analysis. Experimental and Applied Acarology, 66, 257–268. CrossrefGoogle Scholar
Xu X.L., Cheng T.Y., Yang H., Liao Z.H. 2016. De novo assembly and analysis of midgut transcriptome of Haemaphysalis flava and identification of genes involved in blood digestion, feeding and defending from pathogens. Infectious Genetics and Evolution, 38, 62–72. CrossrefGoogle Scholar
Comments (0)