Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

See all formats and pricing
More options …
Volume 62, Issue 2


Ecological implications of floods on the parasite communities of two freshwater catfishes in a Neotropical floodplain

Priscilla de Oliveira Fadel Yamada
  • Corresponding author
  • São Paulo State University (Unesp), Institute of Biosciences, Botucatu, São Paulo state, Brazil
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Fabio Hideki Yamada
  • São Paulo State University (Unesp), Institute of Biosciences, Botucatu, São Paulo state, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Reinaldo José da Silva
  • São Paulo State University (Unesp), Institute of Biosciences, Botucatu, São Paulo state, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Luciano Alves dos Anjos
  • São Paulo State University (Unesp), School of Natural Sciences and Engineering, Ilha Solteira, São Paulo state, Brazil
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-18 | DOI: https://doi.org/10.1515/ap-2017-0039


The parasite communities of two freshwater catfishes (Auchenipterus osteomystax and Trachelyopterus galeatus) were analyzed during the dry and rainy seasons in a Neotropical floodplain. The nature of river-floodplain systems places specific demands on parasite community structure, due to changes in the host environment. It was therefore hypothesized that flood conditions lead to an increase in the richness and abundance of fish parasites in the rainy season at the mouth of Aguapeí River floodplain. The Auchenipterus osteomystax parasite community was richer (11 vs. eight) in species than T. galeatus, although the latter exhibited a greater parasite burden (F1,108 = 126.99, P<0.0001). During the rainy season both host species demonstrated high levels of parasitism (least squared means ± SE = 1.69 ± 0.05 vs. 1.34 ± 0.05; F1,108 = 21.45, P<0.0001). Differences were found in the composition of the parasite species and the proportion of parasites for each host species and between each seasonal period. Flood conditions during the rainy season caused a change in the composition and structure of the parasitic communities. The results corroborate the hypothesis that floods are one of the most significant influences on shaping the parasite communities of fish in floodplains. Our greatest concern is the reduction these dynamics and effects bring about on local biota and, consequently, in host-parasite interaction. We would therefore like to take this opportunity to warn environmental agencies and hydroelectric companies about the importance of the conservation of the diversity of this location.

Keywords: Auchenipterus osteomystax; Trachelyopterus galeatus; parasite similarity; hydrological regime; general linear models; biodiversity conservation


  • Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. The Journal of Parasitology, 83, 575–583Google Scholar

  • Chubb J.C. 1977. Seasonal occurrence of helminths in freshwater fishes. Part I. Monogenea. Advances in Parasitology, 15, 133–192Google Scholar

  • Cohen S.C., Justo M.C.N., Kohn A. (Ed.). 2013. South american monogenoidea parasites of fishes, amphibians and reptiles. Rio de Janeiro, Oficina de Livros, pp. 662Google Scholar

  • Cunico A.M., Graça W.J., Veríssimo S., Bini L.M. 2002. Influência do nível hidrológico sobre a assembléia de peixes em lagoa sazonalmente isolada da planície de inundação do alto rio Paraná. Acta Scientiarum Biological Sciences, 24, 383–389Google Scholar

  • Dias M.L.G.G., Eiras J.C., Machado M.H., Souza G.T.R., Pavanelli G.C. 2003. The life cycle of Clinostomum complanatum Rudolphi 1814 (Digenea, Clinostomidae) at the floodplain of the high Paraná river, Brazil. Parasitology Research, 89, 506–508Google Scholar

  • Eiras J.C., Takemoto R.M., Pavanelli G.C. (Ed.). 2006. Métodos de estudo e técnicas laboratoriais em parasitologia de peixes. Maringá, Eduem, pp. 199. (In Spanish)Google Scholar

  • Esch G.W., Kennedy C.R., Bush A.O., Aho J.M. 1988. Patterns in helminth communities in freshwater fish in Great Britain: alternative strategies for colonization. Parasitology, 96, 519–532Google Scholar

  • Gaspar da Luz K.D., Oliveira E.F., Petry A.C., Júlio-Jr H.F., Pavanelli C.S., Gomes L.C. 2004. Fish Assemblages in the Upper Paraná River Floodplain. In: (Ed. A.A. Agostinho, L. Rodrigues, L.C. Gomes, S.M. Thomaz and L.E. Miranda) Structure and functioning of the Paraná River and its floodplain. EDUEM, Maringá, 107–113Google Scholar

  • Graça W.J., Pavanelli, C.S. (Ed.). 2007. Peixes da planície de inundação do Alto rio Paraná e áreas adjacentes. Maringá, Eduem, pp. 241. (In Spanish)Google Scholar

  • Hamilton W.J, Poulin R. 2001. Parasitism, water temperature and life history characteristics of the freshwater fish Gobiomorphus brevisceps Stokell (Eleotridae). Ecology of Freshwater Fish, 10, 105–110. CrossrefGoogle Scholar

  • Hammer Ø., Harper D.A.T., Ryan P.D. 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, pp. 9Google Scholar

  • Hanek C, Fernando C.H. 1978. The role of season, habitat, host age and sex on gill parasitism of Lepomis gibbosus (L.). Canadian Journal of Zoology, 56, 1247–1250Google Scholar

  • Hartvigsen R., Kennedy C.R. 1993. Patterns in the composition and richness of helminth communities in brown trout, Salmo trutta, in a group of reservoirs. Journal of Fish Biology, 43, 603–615Google Scholar

  • Janovy Jr J., Snyder S.D., Clopton R.E. 1997. Evolutionary constraints on population structure: the parasites of Fundulus zebrinus (Pisces: Cyprinodontidae) in the South Platte River of Nebraska. Journal of Parasitology, 83, 584–592Google Scholar

  • Junk W.J., Bayley T.B., Sparks R.E. 1989. The flood pulse concept in river-floodplain-systems. Canadian Special Publications for Fisheries and Aquatic Sciences, 106, 110–127Google Scholar

  • Junk W.J., Wantzen K.M. 2004. The flood pulse concept: New aspects, approaches, and applications – an update. In: (Eds. R. Welcomme, T. Petr) Proceedings of the 2nd Large River Symposium (LARS), Pnom Penh, RAP Publication, Bangkok, 117–149Google Scholar

  • Kadlec D, Šimková A, Jarkovský J., Gelnar M. 2003. Parasite communities of freshwater fish under flood condition. Parasitology Research, 89, 272–283. CrossrefGoogle Scholar

  • Kennedy C.R. 1978. An analysis of the metazoan parasitocoenoses of brown trout Salmo trutta from British lakes. Journal of Fish Biology, 13, 255–263Google Scholar

  • Kennedy C.R. 1997. Freshwater fish parasites and environmental quality: an overview and caution. Parassitologia, 39, 249–254Google Scholar

  • Kennedy C.R., Hartvigsen R., Halvorsen O. 1991. The importance of fish stocking in the dissemination of parasites throughout a group of reservoirs. Journal of Fish Biology, 38, 541–552Google Scholar

  • Lafferty K.D. 2008. Ecosystem consequences of fish parasites. Journal of Fish Biology, 73, 2083–2093. CrossrefGoogle Scholar

  • Lafferty K.D., Kuris A.M. 1999. How environmental stress affects the impact of parasites. Limnology and Oceanography, 44, 925–931Google Scholar

  • Lowe-McConnell R.H. (Ed.). 1987. Ecological studies in tropical fish communities. Cambridge University Press, Cambridge, pp. 382Google Scholar

  • Magurran A.E. (Ed.). 2004. Measuring biological diversity. Oxford, Blackwell Science, pp. 256Google Scholar

  • Marcogliese D.J. 2004. Parasites: small players with crucial roles in the ecological theatre. EcoHealth, 1, 151–164. CrossrefGoogle Scholar

  • Marcogliese D.J. 2005. Parasites of the superorganism: Are they indicators of ecosystem health? International Journal for Parasitology, 35, 705–716. CrossrefGoogle Scholar

  • Marcogliese D.J., Cone D.K. 1991. Important of lake characteristics in structuring parasite communities of salmonids from insular Newfoundland. Canadian Journal of Zoology, 69, 2962–2967Google Scholar

  • Marcogliese D.J., Cone D.K. 1997. Parasite communities as indicators of ecosystem stress. Parassitologia, 39, 227–232Google Scholar

  • Mesquita R.L.B., Azevedo R.K., Abdallah V.D., Luque J.L. 2011. Ectoparasites as numerical dominant species in parasite community of Trachelyopterus striatulus (Siluriformes: Auchenipteridae) from Guandu River, southeastern Brazil. Brazilian Journal of Biology, 71, 623–627Google Scholar

  • Monteiro C.A.F. (Ed.). 1973. A dinâmica climática e as chuvas do estado de São Paulo: estudo geográfico sob forma de atlas. São Paulo: IGEOG, pp. 130. (In Spanish)Google Scholar

  • Moravec F. (Ed.). 1998. Nematodes of freshwater fishes of the Neotropical region. Czech Republic, Academia Praha, 464 pp.Google Scholar

  • Okada E.K., Agostinho A.A., Petrere Jr. M., Penczak T. 2003. Factors affecting fish diversity and abundance in drying ponds and lagoons in the upper Paraná River basin, Brazil. Ecohydrology and Hydrobiology, 3, 97–110Google Scholar

  • Oliveira E.F., Luiz E.A., Agostinho A.A., Benedito-Cecilio E. 2001. Fish assemblages in littoral areas of the upper Paraná river floodplain, Brazil. Acta Scientiarum Biological Sciences, 23, 369–376Google Scholar

  • Pavanelli G.C., Machado M.H., Takemoto R.M. 1997. Fauna helmíntica de peixes do rio Paraná, região de Porto Rico, Paraná. In: (Eds. A.E.A.M. Vazzoler, A.A. Agostinho, N.S. Hahn). A Planície de inundação do Alto rio Paraná: aspectos físicos, biológicos e socioeconômicos. EDUEM, Maringá, 307–329. ( In Spanish)Google Scholar

  • Pavanelli G.C., Machado M.H., Takemoto R.M., Guidelli G.M., Lizama M.A.P. 2004. Helminth fauna of fishes: diversity and ecological aspects. In: (Eds S.M. Thomaz, A.A. Agostinho, N.S. Hahn) The upper Paraná River and its Floodplain: physical aspects, ecology and conservation. Backhuis Publishers, Leiden, 309–329Google Scholar

  • Petry A.C., Agostinho A.A., Gomes L.C. 2003. Fish assemblages of tropical floodplain lagoons: exploring the role of connectivity in a dry year. Neotropical Ichthyology, 1, 111–119Google Scholar

  • Poulin R. 1995. Phylogeny, ecology, and the richness of parasite communities in vertebrates. Ecological Monographs, 65, 283–302Google Scholar

  • Poulin R. 1997. Species richness of parasite assemblages: evolution and patterns. Annual Review of Ecology and Systematics, 28, 341–358. CrossrefGoogle Scholar

  • Poulin R. 2003. The decay of similarity with geographical distance in parasite communities of vertebrate hosts. Journal of Biogeography, 30, 1609–1615. CrossrefGoogle Scholar

  • Poulin R., Morand S. 1999. Geographical distances and the similarity among parasite communities of conspecific host population. Parasitology, 119, 369–374. CrossrefGoogle Scholar

  • Power M.E., Sun A., Parker G., Dietrich W.E., Wootton J.T. 1995. Hydraulic Food-chain Models: an approach to the study of food-web dynamics in large rivers. Bioscience, 45, 159–167Google Scholar

  • Rocha P.C., Tommaselli J.T.G. 2012. Variabilidade hidrológica nas bacias dos rios Aguapeí e Peixe, região oeste paulista. Revista Brasileira de Climatologia, 10, 69–84. (In Spanish)Google Scholar

  • Soininen J., Mcdonald R., Hillebrand H. 2007. The distance decay of similarity in ecological communities. Ecography, 30, 3–12. CrossrefGoogle Scholar

  • Statsoft Inc. (Ed.). 2005. Statistica (data analysis software system), version 7.1Google Scholar

  • Takemoto R.M., Pavanelli G.C. 1996. Proteocephalidean Cestodes in the Freshwater Fish Cichla monoculus from the Paraná River, Brazil. Studies on Neotropical Fauna and Environment, 31, 123–127Google Scholar

  • Takemoto R.M., Pavanelli G.C., Lizama M.A.P., Lacerda A.C.F., Yamada F.H., Moreira L.H.A., et al. 2009. Diversity of parasites of fish from the Upper Paraná River floodplain, Brazil. Brazilian Journal of Biology, 69, 691–705. CrossrefGoogle Scholar

  • Tavares L., Luque J.L. 2008. Similarity between metazoan parasite communities of two sympatric brackish fish species from Brazil. Journal of Parasitology, 94, 985–989. CrossrefGoogle Scholar

  • Tavares-Dias M., Oliveira M.S.B., Gonçalves R.A., Silva L.M.A. 2014. Ecology and seasonal variation of parasites in wild Aequidens tetramerus, a Cichlidae from the Amazon. Acta Parasitologica, 59, 158–164. CrossrefGoogle Scholar

  • Thatcher V.E. (Ed.). 2006. Amazon fish parasites. Sofia, Bulgaria, Pensoft Publishers, pp. 508Google Scholar

  • Thomaz S.M., Bini, L.M., Bozelli R.L. 2007. Floods increase similarity among aquatic habitats in river-floodplain systems. Hydrobiologia, 579, 1–13. CrossrefGoogle Scholar

  • Yamada F.H., Takemoto R.M., Pavanelli G.C. 2007. Ecological aspects of ectoparasites from the gills of Satanoperca pappaterra (Heckel, 1840) (Cichlidae) from the upper Paraná river floodplain, Brazil. Acta Scientiarum Biological Sciences, 29, 33–336Google Scholar

  • Zar J.H. (Ed.) 2010. Biostatistical analysis. New Jersey, Prentice-Hall, Inc., pp. 663Google Scholar

About the article

Received: 2016-08-11

Revised: 2017-01-06

Accepted: 2017-01-10

Published Online: 2017-04-18

Published in Print: 2017-06-01

Citation Information: Acta Parasitologica, Volume 62, Issue 2, Pages 312–318, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0039.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS.Get Permission

Comments (0)

Please log in or register to comment.
Log in