Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 2 (Jun 2017)

Issues

Disruption of egg production by triclabendazole-resistant Fasciola hepatica following treatment with a commercial preparation of myrrh (Mirazid)

Mohamed M.O. Abdelaal
  • Zoology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, Egypt
  • Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Gerard P. Brennan
  • Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Robert E.B. Hanna
  • Veterinary Sciences Division, Agri-Food and Biosciences Institute (AFBI), Stormont, Belfast BT4 3SD, Northern Ireland, UK
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Ahmed Abdel-Aziz / Ian Fairweather
  • Corresponding author
  • Parasite Therapeutics Research Group, School of Biological Sciences, Medical Biology Centre, The Queen’s University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
Published Online: 2017-04-18 | DOI: https://doi.org/10.1515/ap-2017-0041

Abstract

An in vitro study has been carried out to monitor changes to the female reproductive system in adult triclabendazole (TCBZ)-resistant Fasciola hepatica following treatment with a commercial preparation of myrrh (“Mirazid”). Flukes were immersed for 6 h and 24 h in myrrh extract at a concentration of 200 µg/ml, then processed for histological and transmission electron microscope (TEM) examination of the uterus, Mehlis’ gland, ovary and vitellaria. Egg production had become abnormal at 6 h post-treatment (pt), with the uterine lumen being filled with free vitelline cells and masses of shell protein material; few eggs were present. At 24 h pt, no eggs were present. Distinct changes to the ovary and Mehlis’ gland were only observed after 24 h incubation in Mirazid. The ovary contained numbers of apoptotic oogonia and oocytes. In the Mehlis’ gland, the S1 cells were disorganised and the processes from them were vacuolated, although the disruption was not significant. More severe changes were observed in the vitelline cells and follicles. After 6 h incubation in Mirazid, although the gross organisation of the vitelline follicles appeared to be normal, nuclear changes indicative of the early stages of apoptosis were observed in the stem cells and shell protein production by the mature cells had decreased. At 24 h pt, a distinct shift in cell population was evident, with the follicles containing mainly mature cells and spaces were present between the cells. The shell globule clusters in the mature cells were disorganised. In more severely-affected follicles, cells were seen to be breaking down, with karyolytic nuclei and disintegrating cytoplasm. Overall, the results have shown that exposure to Mirazid treatment had a severe impact on egg production by TCBZ-resistant flukes, an effect that was mediated by disruption of the vitelline cells and of the mechanism co-ordinating egg formation in the ootype.

Keywords: Fasciola hepatica; liver fluke; Mirazid; in vitro; transmission electron microscopy; histology; vitellaria; ovary; uterus; Mehlis’ gland; egg production

References

  • Abdelaal M.M.O., Brennan, G.P., Abdel-Aziz, A., 2016. Fairweather, 2016changes to the tegumental system and gastrodermal cells of adult Fasciola hepatica following treatment in vivo with a commercial preparation of myrrh (Mirazid). Journal of Helminthology, 91, 1–14. CrossrefGoogle Scholar

  • Abdul-Ghani R.A., Loutfy N., Hassan, A. 2009. Myrrh and trematodoses in Egypt: An overview of safety, efficacy and effectiveness profiles. Parasitology International, 58, 210–214. CrossrefGoogle Scholar

  • Abo-Madyan A.A., Morsy T.A., Motawea S.M. 2004a. Efficacy of myrrh in the treatment of schistosomiasis (haematobium and mansoni) in Ezbet-El-Bakly, Tamiya Center, El-Fayoum Governorate, Egypt. Journal of the Egyptian Society of Parasitology, 34, 423–426Google Scholar

  • Abo-Madyan A.A., Morsy T.A., Motawea S.M., Morsy A.T.A. 2004b. Clinical trial of Mirazid in treatment of human fascioliasis, Ezbert El-Bakly (Tamyia Center) Al-Fayoum Governate. Journal of the Egyptian Society of Parasitology, 34, 807–818Google Scholar

  • Andersson M., Bergendorff O., Shan R., Zygmunt P., Sterner O. 1997. Minor components with smooth muscle relaxing properties from scented myrrh (Commiphora guidotti). Planta Medica, 63, 251–254Google Scholar

  • Ashrafi K., Bargues M.D., O’Neill S., Mas-Coma S. 2014. Fascioliasis: A worldwide parasitic disease of importance in travel medicine. Travel Medicine and Infectious Diseases, 12, 636– 649. CrossrefGoogle Scholar

  • Badria F., Abou Mohamed G., El-Mowafy A., Massoud A., Salama O. 2001. Mirazid: a new schistosomicidal drug. Pharmaceutical Biology, 93, 127–131Google Scholar

  • Basyoni M.M.A., El-Sabaa A.-A.A. 2013. Therapeutic potential of myrrh and ivermectin against experimental Trichinella spiralis infection in mice. Korean Journal of Parasitology, 51, 297–304. CrossrefGoogle Scholar

  • Björkman N., Thorsell W. 1964. On the ultrastructure of the ovary of the liver fluke (Fasciola hepatica L.). Zeitschrift für Zellforschung und Mikroskopische Anatomie, 63, 538–549Google Scholar

  • Botros S., William S., Ebeid F., Cioli D., Katz N., Day T.A., Bennett J.L. 2004. Lack of evidence for an antischistosomal activity of myrrh in experimental animals. American Journal of Tropical Medicine and Hygiene, 71, 206–210Google Scholar

  • Botros S., Sayed H., El-Dusoki H., Sabry H., Rabie I., El-Ghannan M., et al. 2005. Efficacy of Mirazid in comparison with praziquantel in Egyptian Schistosoma mansoni-infected school children and households. American Journal of Tropical Medicine and Hygiene, 72, 199–223Google Scholar

  • Botros S., El-Lakkany N.M., Badawy A.A., Mahmoud S.S., Ebeid F.A., Fenwick A. 2009. Mirazid shows insignificant activity against ovine fascioliasis. Annals of Tropical Medicine and Parasitology, 103, 605–616. CrossrefGoogle Scholar

  • Chin Y., Balunas M., Chai L. B., Kinghorn D. A. 2006. Drug discovery from natural sources. AAPS Journal, 8, 239–253. CrossrefGoogle Scholar

  • Claeson P., Andersson R., Samuelson G. 1991. T-cadinol – a pharmacologically active constituent of scented myrrh – introductory pharmacological characterization and high-field H-1-NMR and C-13-NMR data. Planta Medica, 57, 352–356. CrossrefGoogle Scholar

  • Colhoun L. M., Fairweather I., Brennan G. P. 1998. Observations on the mechanism of eggshell formation in the liver fluke, Fasciola hepatica. Parasitology, 116, 555–567Google Scholar

  • Cragg G.M., Newman D.J. 2013. Natural products: A continuing source of novel drug leads. Biochimica et Biophysica Acta – General Subjects, 1830, 3670–3695. CrossrefGoogle Scholar

  • Cragg G.M., Grothaus P.G., Newman D.J. 2014. New Horizons for old drugs and drug leads. Journal of Natural Products, 77, 703–723. CrossrefGoogle Scholar

  • Dawes B. 1966a. Experimental fascioliasis: some effects on Fasciola hepatica of treatment of rat hosts with Bithionol (“Actamer”). Helminthologia, 7, 297–307Google Scholar

  • Dawes B. 1966b. Some apparent effects of bithionol (“Actamer”) on Fasciola hepatica. Nature, 209, 424–425Google Scholar

  • Dawes B. 1967. Experimental fascioliasis in small mammals: apparent effects of bithionol on Fasciola hepatica in rats. Helminthologia, 8, 97–101Google Scholar

  • Dorny P., Praet N., Deckers N., Gabriel S. 2009. Emerging foodborne parasites. Veterinary Parasitology, 163, 196–206. CrossrefGoogle Scholar

  • El Ashry E.S., Rashed N., Salama O.M., Saleh A. 2003. Components, therapeutic value and uses of myrrh. Pharmazie, 8, 163–168Google Scholar

  • El Malky, M.A., Lu, S.H., El-Beshbishi, S.N., Saudy, N.S., Ohta, N. 2013. Effect of Mirazid in Schistosoma japonicum-infected mice: parasitological and parasitological assessment. Parasitology Research, 112, 373–377. CrossrefGoogle Scholar

  • Fairweather I. 2011. Liver fluke isolates: a question of provenance. Veterinary Parasitology, 176, 1–8. CrossrefGoogle Scholar

  • Fairweather I., Anderson H. R., Threadgold L. T. 1988. Fasciola hepatica: morphological changes in vitelline cells following treatment in vitro with the deacetylated (amine) metabolite of diamphenethide (DAMD). International Journal for Parasitology, 18, 1061–1069Google Scholar

  • Fairweather I., McShane D.D., Shaw L., Ellison S.E., O’Hagan N.T., York E.A., et al. 2012. Development of an egg hatch assay for the diagnosis of triclabendazole resistance in Fasciola hepatica: proof of concept. Veterinary Parasitology, 183, 249–259. CrossrefGoogle Scholar

  • Fairweather I., Threadgold L.T., Hanna R.E.B. 1999. Development of Fasciola hepatica in the mammalian host. In: (Ed. J.P. Dalton) Fasciolosis. CAB International Publishing, Oxon, U.K., pp. 47–111Google Scholar

  • Fathy F.M. 2011. Effect of mirazid (Commiphora molmol) on experimental giardiasis. Journal of the Egyptian Society of Parasitology, 41, 155–177Google Scholar

  • Gresson R. A. R. 1964. Electron microscopy of the ovary of Fasciola hepatica. Quarterly Journal of Microscopical Science, 105, 213–218Google Scholar

  • Halferty L., Brennan G.P., Trudgett A., Hoey L., Fairweather I. 2009. Relative activity of triclabendazole metabolites against the liver fluke, Fasciola hepatica. Veterinary Parasitology, 159, 126–138. CrossrefGoogle Scholar

  • Hamed M.A., Hetta M.H. 2005. Efficacy of Citrus reticulata and Mirazid in treatment of Schistosoma mansoni. Memórias do Instituto Oswaldo Cruz, 100, 771–778. CrossrefGoogle Scholar

  • Hammond J.A., Fielding D., Bishop S.C. 1997. Prospects for plant anthelmintics in tropical veterinary medicine. Veterinary Research Communications, 21, 213–228Google Scholar

  • Hanna R.E.B. 2015. Fasciola hepatica: histology of the reproductive organs and differential effects of triclabendazole on drug-sensitive and drug-resistant fluke isolates and on flukes from selected field cases. Pathogens, 4, 431–456. CrossrefGoogle Scholar

  • Hanna R. E. B., Cromie L., Taylor S. M., Couper, A. 2006. The effect of a parenteral ivermectin/closantel injection on the growth and reproductive development of early immature Fasciola hepatica in cattle. Veterinary Parasitology, 142, 78–90. CrossrefGoogle Scholar

  • Hanna R.E.B., Edgar H., Moffett D., McConnell S., Fairweather I., Brennan G.P., et al. 2008. Fasciola hepatica: histology of the testis in egg-producing adults of several laboratory-maintained isolates of flukes grown to maturity in cattle and sheep and in flukes from naturally infected hosts. Veterinary Parasitology, 157, 222–234. CrossrefGoogle Scholar

  • Hanna R. E. B., Edgar H. W. J., McConnell S., Toner E., McConville M., Brennan G.P., et al. 2010. Fasciola hepatica: histological changes in the reproductive structures of triclabendazole (TCBZ)-sensitive and TCBZ-resistant flukes after treatment in vivo with TCBZ and the related benzimidazole derivative, compound alpha. Veterinary Parasitology, 168, 240–254. CrossrefGoogle Scholar

  • Hanna R.E.B., Scarcella S., Solana H., McConnell S., Fairweather I. 2012. Early onset of changes to the reproductive system of Fasciola hepatica following in vivo treatment with triclabendazole. Veterinary Parasitology, 184, 341–347. CrossrefGoogle Scholar

  • Hanna R.E.B., Forster F.I., Brennan G.P., Fairweather I. 2013. Fasciola hepatica: histological demonstration of apoptosis in the reproductive organs of flukes of triclabendazole-sensitive and triclabendazole-resistant isolates, and in field-derived flukes from triclabendazole-treated hosts, using in situ hybridization to visualise endonuclease-generated DNA strand breaks. Veterinary Parasitology, 191, 240–251. CrossrefGoogle Scholar

  • Hanna R.E.B., McMahon C., Ellison S., Edgar H.W., Kajugu P.-E., Gordon A., et al. 2015. Fasciola hepatica: A comparative survey of adult fluke resistance to triclabendazole, nitroxynil and closantel on selected upland and lowland sheep farms in Northern Ireland using faecal egg counting, coproantigen ELISA testing and fluke histology. Veterinary Parasitology, 207, 34–43. CrossrefGoogle Scholar

  • Happich F.A., Boray J.C. 1969. Quantitative diagnosis of chronic fasciolosis – 2. The estimation of daily total egg production of Fasciola hepatica and the number of adult flukes in sheep by faecal egg count. Australian Veterinary Journal, 45, 329–331Google Scholar

  • Haridy F.M., El Garhy M.F., Morsy T.A. 2003. Efficacy of Mirazid (Commiphora molmol) against fascioliasis in Egyptian sheep. Journal of the Egyptian Society of Parasitology, 33, 917–924Google Scholar

  • Haridy F.M., Dawoud H.A., Morsy T.A. 2004. Efficacy of Commiphora molmol (Mirazid) against sheep naturally infected with monieziasis expansa in Al-Santa Center, Gharbia Governate, Egypt. Journal of the Egyptian Society of Parasitology, 34, 775–782Google Scholar

  • Haridy F.M., El-Sherbiny G.T., Morsy T.A. 2006. Some parasitic flukes infecting farm animals in Al-Santa Center, Gharbia Governate, Egypt. Journal of the Egyptian Society of Parasitology, 36, 259–264Google Scholar

  • Hassan M., El-Motaiem M., Afify H., Abaza B., El-Shafei M., Massoud M.A. 2003. In vitro effect of Mirazid in Schistosoma mansoni worms. Journal of the Egyptian Society of Parasitology, 33, 999–1008Google Scholar

  • Irwin S.W.B., Threadgold L.T. 1970. Electron-microscope studies on Fasciola hepatica VIII. The development of the vitelline cells. Experimental Parasitology, 28, 399–411Google Scholar

  • Irwin S.W.B., Threadgold L.T. 1972. Electron microscope studies of Fasciola hepatica. X. Egg formation. Experimental Parasitology, 31, 321–331Google Scholar

  • Kayser O., Kiderlen A.F., Croft S.L. 2003. Natural products as antiparasitic drugs. Parasitology Research, 90, 55–62. CrossrefGoogle Scholar

  • Keiser J., Utzinger J. 2005. Emerging foodborne trematodiasis. Emerging Infectious Diseases, 11, 1503–1510Google Scholar

  • McConville M., Hanna R.E.B., Brennan G.P., Edgar H.W.J., McConnell S., McCoy M., et al. 2012. Impact of compound alpha treatment in vivo on egg production by the liver fluke, Fasciola hepatica. Veterinary Parasitology, 187, 183–195. CrossrefGoogle Scholar

  • Massoud A., El Sisi S., Salama O., Massoud A. 2001. Preliminary study of the therapeutic efficacy of a new fasciolicidal drug derived from Commiphora molmol (myrrh). American Journal of Tropical Medicine and Hygiene, 65, 96–99Google Scholar

  • Massoud A., El Ebiary F.H., Abou-Gamra M.M., Mohamed, G.F., Shaker S.M. 2004 Evaluation of schistosomicidal activity of myrrh extract: parasitological and histological study. Journal of the Egyptian Society of Parasitology, 34, 1051–1076Google Scholar

  • Massoud A.M., Shalaby H.A., El Khateeb R.M., Mahmoud M.S., Kutkat, M.A. 2012. Effects of Mirazid and myrrh volatile oil on adult Fasciola gigantica under laboratory conditions. Asian Pacific Journal of Tropical Biomedicine, 2, 875–884Google Scholar

  • Massoud A.M., Shalaby H.A.M., El Khateeb R.M., Mahmoud M.S., Kurkat M.A.A. 2013. Tegumental histological effects of Mirazid and Myrrh volatile oil on adult Fasciola gigantica. Asian Pacific Journal of Tropical Biomedicine, 3, 501–504Google Scholar

  • Ndjonka D., Rapado L.N., Silber A.M., Liebau E., Wrenger C. 2013. Natural products as a source for treating Neglected Parasitic Diseases. International Journal of Molecular Sciences, 14, 3395–3439. CrossrefGoogle Scholar

  • Newman D.J., Cragg G.M. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. Journal of Natural Products, 75, 311–335. CrossrefGoogle Scholar

  • O’Neill J.F., Johnston R.C., Halferty L., Hanna R.E.B., Brennan G.P., Fairweather I. 2015. A comparative study on the impact of two artemisinin derivatives, artemether and artesunate, on the female reproductive system of Fasciola hepatica. Veterinary Parasitology, 211, 182–194. CrossrefGoogle Scholar

  • Ramzy F., Mahmoud S., William S. 2010. Further assessment of Mirazid as antischistosomal drug in experimental schistosomiasis hematobium. Pharmaceutical Biology, 48, 775–779. CrossrefGoogle Scholar

  • Robinson M.W., Colhoun L.M., Fairweather I., Brennan G.P., Waite J.H. 2001. Development of the vitellaria of the liver fluke, Fasciola hepatica in the rat host. Parasitology, 123, 509–518. CrossrefGoogle Scholar

  • Sheir Z., Nasr A.A., Massoud A., Salama O., Badra G.A., El-Shennawy H., et al. 2001. A safe, effective, herbal antischistosomal therapy derived from Myrrh. American Journal of Tropical Medicine and Hygiene, 65, 700–704Google Scholar

  • Shen T., Li G.H., Wang X.N., Lou H.X. 2012. The genus Commiphora: A review of its traditional uses, phytochemistry and pharmacology. Journal of Ethnopharmacology, 142, 319– 330. CrossrefGoogle Scholar

  • Skuce P. J., Fairweather I. 1988. Fasciola hepatica: perturbation of secretory activity in the vitelline cells by the sodium ionophore monensin. Experimental Parasitology, 65, 20–30Google Scholar

  • Skuce P. J., Fairweather I. 1990. The effect of the hydrogen ionophore closantel upon the pharmacology and ultrastructure of the adult liver fluke Fasciola hepatica. Parasitology Research, 76, 241–250Google Scholar

  • Soliman O.E., El-Arman M., Abdul-Samie E.R., El-Nemer H.I., Massoud A. 2004. Evaluation of myrrh (Mirazid) therapy in fascioliasis and intestinal schistosomiasis in children: immunological and parasitological study. Journal of the Egyptian Society of Parasitology, 34, 941–966Google Scholar

  • Stammers B. M. 1975. The effects of rafoxanide and nitroxynil on the survival, growth and morphology of Fasciola hepatica in rabbits. Zeitschrift für Parasitenkunde, 46, 153–161Google Scholar

  • Stammers B. M. 1976. The effects of nitroxynil on the survival, growth and morphology of Fasciola hepatica in sheep. Research in Veterinary Science, 20, 174–179Google Scholar

  • Stitt A. W., Fairweather I. 1996. Fasciola hepatica: disruption of the vitelline cells in vitro by the sulphoxide metabolite of triclabendazole. Parasitology Research, 82, 333–339Google Scholar

  • Tagboto S., Townson S. 2001. Antiparasitic properties of medicinal plants and other naturally occurring products. Advances in Parasitology, 50, 198–295Google Scholar

  • Thorsell, W., Björkman N. 1965. On the fine structure of the Mehlis’ gland cells in the liver fluke, Fasciola hepatica L. Parasitology Research, 26, 63–70Google Scholar

  • Threadgold L. T. 1982. Fasciola hepatica: Stereological analysis of vitelline cell development. Experimental Parasitology, 54, 352–365Google Scholar

  • Threadgold L. T., Irwin S. W. B. 1970. Electron microscope studies of Fasciola hepatica IX. The fine structure of Mehlis’ gland. Zeitschrift für Parasitenkunde, 35, 16–30Google Scholar

  • Toner E., Brennan G.P., Wells K., McGeown J.G., Fairweather I. 2008. Physiological and morphological effects of genistein against the liver fluke, Fasciola hepatica. Parasitology, 135, 1189–1203. CrossrefGoogle Scholar

  • Toner E., Brennan G. P., Hanna R. E. B., Fairweather I. 2011. Disruption of egg formation by Fasciola hepatica following treatment in vivo with triclabendazole in the sheep host. Veterinary Parasitology, 117, 79–89. CrossrefGoogle Scholar

  • Vissiennon C., Goos K.H., Goos O., Nieber K. 2015. Antispasmodic effects of myrrh due to calcium antagonistic effects in inflamed rat small intestinal preparations. Planta Medica, 81, 116–122. CrossrefGoogle Scholar

About the article

Received: 2016-07-15

Revised: 2016-11-13

Accepted: 2017-01-12

Published Online: 2017-04-18

Published in Print: 2017-06-01


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0041.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in