Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 2 (Jun 2017)

Issues

Morphological description of Cosmocerca sp. (Nematoda: Cosmocerdidae) from the Mascarene grass frog Ptychadena cf. mascareniensis (Amphibia: Ptychadenidae). A light and scanning electron microscopic studies

Rewaida Abdel-Gaber / Fathy Abdel-Ghaffar / Reem Kamel
  • Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Sherein Maher
  • Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Nashwa El Deeb
  • Zoology Department, Faculty of Women for Arts, Science and Education, Ain Shams University, Heliopolis, Egypt
  • Biology Department, Faculty of Science-Yanbu, Taibah University, Medina, Saudi Arabia
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Saleh Al Quraishy / Heinz Mehlhorn
Published Online: 2017-04-18 | DOI: https://doi.org/10.1515/ap-2017-0052

Abstract

The Mascarene grass frog Ptychadena cf. mascareniensis is a species of frog with a vast area of distribution in Africa. A total of 300 frog specimens were collected from different localities at El-Giza province, Egypt; then dissected and examined for the presence of parasitic infection. Only eighty six (28.66%) specimens were found to be naturally infected with nematode parasite. Seasonally, the prevalence of infection was reached its maximum value of 74.66% during summer and minimum values of 26.66% (20/75), 13.33% (10/75) during spring and autumn, respectively; while no records were observed during winter season. The morphology of the recovered parasite was studied by using light and scanning electron microscopy. The adult worm characterized by anterior extremity with small mouth opening being surrounded by three lips provided with four sub-median cephalic papillae and one pair of lateral amphids. Body measurements showed that male worms were smaller than females measuring 1.22–2.43 (2.21 ± 0.1) mm in length and 0.21–0.34 (0.29 ± 0.01) mm in width. Females measured 1.9–3.7 (2.8 ± 0.1) mm in length and 0.24–0.42 (0.38 ± 0.01) mm in width. Comparing the present parasite with other species of the same genus described previously, several similarities were observed. However, peculiar new characteristics such as the arrangement of plectanes and somatic papillae, the presence of gubernaculum, the position of nerve ring, excretory pore, and vulval opening make it reasonable belongs to the family Cosmocercidae and identified as Cosmocerca sp. In addition, the present study was the first report for occurrence of cosmocercid species from the Mascarene grass frog in Egypt.

Keywords: Amphibians; Ptychadena cf. mascareniensis; Cosmocercids; morphological description

References

  • Abdel-Ghaffar F., Abdel-Gaber R., Maher S., El Deeb N., Kamel R., Al Quraishy S., Mehlhorn H. 2016. Morphological and ultrastructural characteristics of Myxobolus ridibundae n. sp. (Myxosporea: Bivalvulida) infecting the testicular tissue of the marsh frog Rana ridibunda (Amphibia: Ranidae) Egyptian Parasitology Research, 116, 133-141. CrossrefGoogle Scholar

  • Aisien S.O., Ayeni F., Ilechie I. 2004. Helminth fauna of anurans from the Guinea savannah at New Bussa, Nigeria. African Zoology, 39, 133–136Google Scholar

  • Assemian N.E., Bony K.Y., Konan K.F., Aliko N.G., Oussou H.K. 2016. Helminth infection pattern of Ptychadena mascareniensis from Daloa city (Ivory Coast) with respect to frog age and sex. International Journal of Information Research and Review, 3, 1717–1721Google Scholar

  • Baker M.R. (Ed.). 1987. Synopsis of the nematoda parasitic in amphibians and reptiles. Occasional Papers in Biology. No 11. Memorial University of Newfoundland. Guelph, Ontario, CanadaGoogle Scholar

  • Boquimpani-Freitas L., Vrcibradic D., Vicente J.J., Bursey C.R., Rocha C.F.D., Van Sluys M. 2001. Helminths of the horned leaf frog, Proceratophrys appendiculata, from southeastern Brazil. Journal of Helminthology, 75, 233–236Google Scholar

  • Bursey C.R., Goldberg S.R., Kraus F. 2005. New genus, new species of Cestoda (Anoplocephalidae), new species of Nematoda (Cosmocercidae) and other helminths in Cyrtodactylus louisiadensis (Sauria: Gekkonidae) from Papua New Guinea. Journal of Parasitology, 91, 882–889Google Scholar

  • Bursey C.R., Goldberg S.R., Kraus F. 2013. A new species of Cosmocerca (Nematoda, Cosmocercidae) and other helminths from Barygenys atra (Anura, Microhylidae) from Papua New Guinea. Acta Parasitologica, 58, 26–29Google Scholar

  • Bursey C.R., Goldberg S.R., Pamarlee J.R. 2001. Gastrointestinal helminths of 51 species of anurans from Reserva Cuzco Amazónico, Peru. Comparative Parasitology, 68, 21–35Google Scholar

  • Bursey C.R., Goldberg S.R., Siler C.D., Brown R.M. 2015. A new species of Cosmocerca (Nematoda: Cosmocercidae) and other helminths in Cyrtodactylus gubaot (Squamata: Gekkonidae) from the Philippines. Acta Parasitologica, 60, 675–681. CrossrefGoogle Scholar

  • Bush A.O., Lafferty K.D., Lotz J.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisted. Journal of Parasitology, 83, 575–583. CrossrefGoogle Scholar

  • Dale V.H., Beyeler S.C. 2001. Challenges in the development and use of ecological indicators. Ecological Indicators, 1, 3–10. CrossrefGoogle Scholar

  • Daszak P., Cunningham A.A., Hyatt A.D. 2003. Infectious disease and amphibian population declines. Diversity and Distributions, 9, 141–150. CrossrefGoogle Scholar

  • Diesing K. 1861. Revision der nematoden. Sitzungsbericte der Akademie der Wissenschaften Mathematisch und Naturwissenschaftliche Klasse Wein, 42, 595–736. ( In German)Google Scholar

  • Duellman W.E., Trueb L. (Eds). 1986. Biology of Amphibians. Johns Hopkins University Press, Baltimore, MD, USAGoogle Scholar

  • Duméril A.M.C., Bibron G.(Eds). 1841. Erpétologie Genérale ou Histoire Naturelle Complète des Reptiles. Volume 8. Paris: Librarie Enclyclopedique de Roret ( In French)Google Scholar

  • Durette-Desset M.C, Batchvarov G. 1974. Deux nématodes parasites d’amphibiens du Togo. Annales de Parasitologie, Paris, 49, 567–576 ( In French)Google Scholar

  • Frost D.R. 2007 Amphibian species of the world: an online reference. Version 4.0. American Museum of Natural History, New York, USAGoogle Scholar

  • Gassmann M. 1975. Contribution à l’étude des trématodes d’amphibiens du Cameroun. Annales de Parasitologie, Paris, 50, 559– 577 ( In French)Google Scholar

  • Goldberg S.R., Bursey C.R., Caldwell J.P., Vitt L.J., Costa G.C. 2007. Gastrointestinal helminths from six species of frogs and three species of lizards, sympatric in Pará State, Brazil. Comparative Parasitology, 74, 327–342. CrossrefGoogle Scholar

  • González C.E., Hamann M.I. 2008. Nematode parasites of two anuran species Rhinella schneideri (Bufonidae) and Scinax acuminatus (Hylidae) from Corrientes, Argentina. Revista de Biolog a Tropical, 56, 2147–2161Google Scholar

  • González C.E., Hamann M.I. 2009. First report of nematode parasites of Physalaemus albonotatus (Steindachner, 1864) (Anura: Leiuperidae) from Corrientes, Argentina. Neotropical Helminthology, 6, 9–23Google Scholar

  • Gray M.J., Smith L.M., Miller D.L., Bursey C.R. 2007. Influences of agricultural land use on Clinostomum attenuatum metacercariae prevalence in southern great plains amphibians. U.S.A. Herpetological Conservation and Biology, 2, 23–28Google Scholar

  • Hof C., Araujo M.B., Jetz W., Rahbek C. 2011. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480, 516–U137. CrossrefGoogle Scholar

  • Hoff G., Frye F., Jacobson E. (Eds). 1984. Diseases of Amphibians and Reptiles. Plenum Press, ISBN 978-0306417115. New York, USAGoogle Scholar

  • Johnson P.T.J., Chase J.M. 2004. Parasites in the food web: linking amphibian malformations and aquatic eutrophication. Ecology Letters, 7, 521–526. CrossrefGoogle Scholar

  • Johnson P.T.J., Chase J.M., Dosh K.L., Hartson R.B., Gross J.A., Larson D.J., et al. 2007. Aquatic eutrophication promotes pathogenic infection in amphibians. Proceedings of the National Academy of Sciences, 104: 15781–15786. CrossrefGoogle Scholar

  • Johnson P.T.J., Lunde K.B., Ritchie E.G., Launer A.E. 1999. The effect of trematode infection on amphibian limb development and survivorship. Science, 284, 802–804. CrossrefGoogle Scholar

  • Kiesecker J.M. 2002. Synergism between trematode infection and pesticide exposure: a link to amphibian limb deformities in nature. Proceedings of the National Academy of Sciences, 99, 9900–9904. CrossrefGoogle Scholar

  • Kirin D., Buchvarov G. 2002. Biodiversity of the helminthes communities of acaudated amphibians (Amphibia-Ecaudata) from Bistritsa riverside (Gotse Delchev region). Experimental Pathology and Parasitology, 5, 13–16. CrossrefGoogle Scholar

  • Kung C.C., Wu H.W. 1945. Parasitic nematodes of Amphibia from Pehpei, Szechwan, China. Sinensia, 16, 78–83Google Scholar

  • Martinez S.A., Maggenti A.R. 1989. Cosmocerca panamaensis sp. n. (Nemata: Cosmocercidae) from the Panamanian Poison-arrow Frog, Dendrobates pumilio Schmidt, 1857, with a Discussion of Prodelphy, the Type Species and Family Authorship in Cosmocerca Diesing, 1861. Proceedings of the Helminthological Society of Washington, 56, 97–103. CrossrefGoogle Scholar

  • McAllister C.T., Bursey C.R. 2004. Endoparasites of the dark-sided salamander, Eurycea longicauda melanopleura, and the cave salamander, Eurtcea lucifuga (Caudata: Plethodontidae), from two caves in Arkansas, U.S.A. Comparative Parasitology, 71, 61–66. CrossrefGoogle Scholar

  • Mohammed M.K., Al-Moussawi A.A., Jasim S.Y. 2010. Helminth parasites of the Green toad Bufo viridis Laurenti, 1768 in Baghdad Area, Central Iraq. Egyptian Academic Journal of Biological Sciences, 2, 17–25Google Scholar

  • Moravec F., Barus V., Rysavy B. 1987. Some parasitic nematodes, excluding Heterakidae and Pharyngodonidae, from amphibians and reptiles in Egypt. Folia Parasitologica, 34, 255–267Google Scholar

  • Moravec F., Sey O. 1985. Some nematode parasites of frogs (Rana spp.) from North Viet Nam. Parasitologia Hungarica, 18, 63–77Google Scholar

  • Patz J.A., Campbell-Lendrum D., Holloway T., Foley J.A. 2005. Impact of regional climate change on human health. Nature, 438: 310–317. CrossrefGoogle Scholar

  • Railliet A. 1916. L’évolution des Schistosomes ou Bilharzies, D’après MM. Leiper, Atkinson et autres. Revue de Médecine Vétérinaire 92, 426. ( In French)Google Scholar

  • Rizvi A.N., Bursey C.R., Bhutia1 B.T. 2011. Cosmocerca kalesari sp. nov. (Nematoda, Cosmocercidae) in Euphlyctis cyanophlyctis (Amphibia, Anura) from Kalesar Wildlife Sanctuary, Haryana, India. Acta Parasitologica, 56, 202–207. CrossrefGoogle Scholar

  • Saad A.I., Khalifa R., Moustafa N. 2009. Studies on the Life Cycle and Identity of Paracosmocerca mucronata (Nematoda: Cosmocercidae) in Amphibians under Experimental Conditions. World Journal of Zoology, 4, 29–36Google Scholar

  • Sessions S.K., Ruth S.B. 1990. Explanation for naturally occurring supernumerary limbs in amphibians. The Journal of Experimental Zoology, 254, 38–47. CrossrefGoogle Scholar

  • Sou S.K., Nandi A.P. 2015. On a new species of Cosmocerca (Nematoda: Cosmocercidae) from Microhyla rubra (Anura: Microhylidae) from West Bengal, India. Acta Parasitologica, 60, 261–265. CrossrefGoogle Scholar

  • Stuart S.N., Chanson J.S., Cox N.A., Young B.E., Rodrigues A.S., Fischman D.L., Waller R.W. 2004. Status and trends of amphibian declines and extinctions worldwide. Science, 306, 1783–1786. CrossrefGoogle Scholar

  • Tkach V.V., Kuzmin Y., Pulis E.E. 2006. A new species of Rhabdias from lungs of the wood frog, Rana sylvatica, in North America: The last sibling of Rhabdias ranae?. Journal of Parasitology, 92, 631–636. CrossrefGoogle Scholar

  • Travassos L. 1925. Contribuicoes para o conhecimento da fauna helmintologica dos batrachios do Brasil. Nematodeos intestinais. Science and Medicine, 3, 673-687. CrossrefGoogle Scholar

  • Yildirımhan H.S., Bursey C.R., Goldberg S.R. 2006. Helminth parasites of the Taurus frog, Rana holtzi, and the Uludag frog, Rana macrocnemis, with remarks on the helminth community of Turkish anurans. Comparative Parasitology, 73, 237–248. CrossrefGoogle Scholar

About the article

Received: 2016-11-29

Revised: 2017-01-06

Accepted: 2017-01-20

Published Online: 2017-04-18

Published in Print: 2017-06-01


Conflict of interest Authors stated that there is no conflict of interest.


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0052.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in