Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

4 Issues per year


IMPACT FACTOR 2016: 1.160
5-year IMPACT FACTOR: 1.185

CiteScore 2016: 1.24

SCImago Journal Rank (SJR) 2016: 0.532
Source Normalized Impact per Paper (SNIP) 2016: 0.721

Online
ISSN
1896-1851
See all formats and pricing
More options …
Volume 62, Issue 3 (Sep 2017)

Issues

Snail species diversity impacts the infection patterns of Echinostoma spp.: Examples from field collected data

Michael R. Zimmermann
  • Corresponding author
  • Department of Biology, Shenandoah University, Winchester, Virginia 22601, USA
  • Department of Biology, Wake Forest University, Winston-Salem, North Carolina 27106, USA
  • Email
  • Other articles by this author:
  • De Gruyter OnlineGoogle Scholar
/ Kyle E. Luth / Gerald W. Esch
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/ap-2017-0059

Abstract

Rapid losses of biodiversity due to the changing landscape have spurred increased interest in the role of species diversity and disease risk. A leading hypothesis for the importance of biodiversity in disease reduction is the dilution effect, which suggests that increasing species diversity within a system decreases the risk of disease among the organisms inhabiting it. The role of species diversity in trematode infection was investigated using field studies from sites across the U.S. to examine the impact of snail diversity in the infection dynamics of both first and second intermediate larval stages of Echinostoma spp. parasites. The prevalence of Echinostoma spp. sporocysts/rediae infection was not affected by increases in snail diversity, but significant negative correlations in metacercariae prevalence and intensity with snail diversity were observed. Additionally, varying effectiveness of the diluting hosts was found, i.e., snail species that were incompatible first intermediate hosts for Echinostoma spp. were more successful at diluting the echinostome parasites in the focal species, while H. trivolvis, a snail species that can harbor the first intermediate larval stages, amplified infection. These findings have important implications not only on the role of species diversity in reducing disease risk, but the success of the parasites in completing their life cycles and maintaining their abundance within an aquatic system.

Keywords: Dilution effect; biodiversity; Echinostoma; metacercaria; snail-trematode interactions

References

  • Anderson J.W., Fried B. 1987. Experimental infection of Physa heterostropha, Helisoma trivolvis, and Biomphalaria glabrata (Gastropoda) with Echinostoma revolutum (Trematoda) cercariae. Journal of Parasitology 73: 49–54. CrossrefGoogle Scholar

  • Begon M. 2008. Effects of host diversity on disease dynamics. In: R.S. Ostfeld, F. Keesing, V.T. Eviner (Eds) Infectious disease ecology: Effect of ecosystems on disease and of disease on ecosystems. Princeton University Press, Princeton, NJ USA, pp. 12–29Google Scholar

  • Benoy G.A., Nudds T.D., Dunlop E. 2002. Patterns of habitat and invertebrate diet overlap between tiger salamanders and ducks in prairie potholes. Hydrobiologia, 481, 47–59 CrossrefGoogle Scholar

  • Boss C.N., Laman T.G., Blankespoor H.D. 1984. Dispersal movements of four species of pulmonate and operculate snails in Douglas Lake, Michigan. Nautilus, 98, 80–83Google Scholar

  • Brown K.M. 1982. Resource overlap and competition in pond snails: An experimental analysis. Ecology, 63, 412–422. CrossrefGoogle Scholar

  • Bush A.O., Kennedy C.R. (1994) Host fragmentation and helminth parasites: Hedging your bets against extinction. International Journal for Parasitology, 24, 1333–1343. CrossrefGoogle Scholar

  • Bush A.O., Lafferty K.D., Lotz L.M., Shostak A.W. 1997. Parasitology meets ecology on its own terms: Margolis et al. revisited. Journalof Parasitology, 83, 575–583. CrossrefGoogle Scholar

  • Byers J.E., Blakeslee A.M.H., Linder E., Cooper A.B., Maguire T.J. 2008. Controls of spatial variation in the prevalence of trematode parasites infecting a marine snail. Ecology, 89, 439–451. CrossrefGoogle Scholar

  • Chase J.M., Wilson W.G., Richards S.A. 2001. Foraging trade-offs and resource patchiness: Theory and experiments with a freshwater snail community. Ecology Letters, 4, 304–312. CrossrefGoogle Scholar

  • Chase J.M. 2003. Experimental evidence for the alternative stable equilibria in a benthic pond food web. Ecology Letters, 6, 733–741. CrossrefGoogle Scholar

  • Clampitt P.T. 1975. How fast is a snail's pace? Active and passive dispersal of Physa integra in Douglas Lake, Michigan. Malacology Review, 8, 121Google Scholar

  • Combes C., Mone H. 1987. Possible mechanisms of the decoy effect in Schistosoma mansoni transmission. International Journal for Parasitology, 17, 971–975. CrossrefGoogle Scholar

  • Combes C. (Ed.) 2001. Parasitism. The Ecology and Evolution of Intimate Interactions. The University of Chicago Press Ltd, LondonGoogle Scholar

  • Cooper N., Griffin R., Franz M., Omotayo M., Nunn C.L. 2012. Phylogenetic host specificity and understanding parasite sharing in primates. Ecology Letters, 15, 1370–1377. CrossrefGoogle Scholar

  • Detwiler J.T., Minchella D.J. 2009. Intermediate host availability masks the strength of experimentally derived colonization patterns in echinostome trematodes. International Journal for Parasitology, 39, 585–590. CrossrefGoogle Scholar

  • Detwiler J. T., Bos D. H., Minchella D. J. 2010. Revealing the secret lives of cryptic species: Examining the phylogenetic relationships of echinostome parasites in North America. Molecular Phylogenetics and Evolution 55, 611–620. CrossrefGoogle Scholar

  • Detwiler J.T., Zajac A.M., Minchella D.J., Belden L.K. 2012. Revealing cryptic parasite diversity in a definitive host: Echinostomes in muskrats. Journal of Parasitology, 98, 1148–1155. CrossrefGoogle Scholar

  • Dillon R.T. (Ed.) 2000. The ecology of freshwater molluscs. Cambridge University Press, Cambridge, U.K.Google Scholar

  • Emelianov I. 2007. How adaptive is parasite species diversity? International Journal for Parasitology, 37, 851–860. CrossrefGoogle Scholar

  • Esteban J.G., Munoz-Antoli C. 2009. Echinostomes: Systematics and life cycles. In: B.R. Fried, R. Toledo (Eds) The biology of echinostomes: From the molecule to the community. Springer, LLC, New York, NY USA, pp. 1–34Google Scholar

  • Fernandez J., Esch G.W. 1991. The component community structure of larval trematodes in the pulmonate snail Helisoma anceps. Journal of Parasitology, 77, 540–550. CrossrefGoogle Scholar

  • Fried B., Bennett M. C. 1979. Studies on encystment of Echinostoma revolutum cercariae. Journal of Parasitology 65, 38–40. CrossrefGoogle Scholar

  • Georgieva S., Faltýnková A., Brown R., Blasco-Costa I., Soldánová M., Sitko J., et al. 2014. Echinostoma 'revolutum' (Digenea: Echinostomatidae) species complex revisted: Species delimitation based on novel molecular and morphological data gathered in Europe. Parasites and Vectors 7, 520. CrossrefGoogle Scholar

  • Hopper J.V., Poulin R., Thiltges D.W. 2008. Buffering role of the intertidal anemone Anthopleura aureoradiata in cercarial transmission from snails to crabs. Journal of Experimental Marine Biology and Ecology, 367, 153–156. CrossrefGoogle Scholar

  • Johnson P.T.J., Hartson R.B., Larson D.J., Sutherland D.R. 2008. Diversity and disease: Community structure drives parasite transmission and host fitness. Ecology Letters, 11, 1017–1026. CrossrefGoogle Scholar

  • Johnson P.T.J., Lund P.J., Hartson R.B., Yoshino T.P. 2009. Community diversity reduces Schistosoma mansoni transmission, host pathology, and human infection risk. Proceedings of the Royal Society B: Biological Sciences, 276, 1657–1663. CrossrefGoogle Scholar

  • Johnson P.T.J., McKenzie V.J. 2009. Effects of environmental change on helminth infections in amphibians: Exploring the emergence of Ribeiroia and Echinostoma infections in North America. In: B.R. Fried, R. Toledo (Eds) The biology of echinostomes: From the molecule to the community. Springer, LLC, New York, NY, pp. 249–280.Google Scholar

  • Johnson P.T.J., Thieltges D.W. 2010. Diversity, decoys and the dilution effect: How ecological communities affect disease risk. Journal of Experimental Biology, 213, 961–970. CrossrefGoogle Scholar

  • Johnson P.T.J., Preston D.L., Hoverman J.T., Henderson J.S., Paull S.H., Richgels K.L.D., Redmond M.D. 2012. Species diversity reduces parasite infection through cross-generational effects on host abundance. Ecology, 93, 56–64. CrossrefGoogle Scholar

  • Johnson P.T.J., Preston D.L., Hoverman J.T., Richgels K.L.D. 2013. Biodiversity decreases disease through predictable changes in host community competence. Nature, 494, 230–234. CrossrefGoogle Scholar

  • Keesing F., Holt R.D., Ostfeld R.S. 2006. Effects of species diversity on disease risk. Ecology Letters, 9, 485–498. CrossrefGoogle Scholar

  • Koh L.P., Dunn R.R., Sodhi N.S., Colwell R.K., Proctor H.C., Smith V.S. 2004. Species coextinction and the biodiversity crisis. Science, 305, 1632–1634. CrossrefGoogle Scholar

  • Laracuente A., Brown R.A., Jobin W. 1979. Comparison of four species of snails as potential decoys to intercept schistosome miracidia. American Journal of Tropical Medicine and Hygeine, 28, 99–105CrossrefGoogle Scholar

  • LoGuidice K., Ostfeld R.S., Schmidt K.A., Keesing F. 2003. The ecology of infectious disease: Effects of host diversity and community composition on Lyme disease risk. Proceedings of the National Academy of Sciences, 100, 567–571. CrossrefGoogle Scholar

  • LoGuidice K., Duerr S.T.K., Newhouse M.J., Schmidt K.A., Killilea M.E., Ostfeld R.S. 2008. Impact of host community composition on Lyme disease risk. Ecology, 89, 2841–2849. CrossrefGoogle Scholar

  • Lootvoet A., Blanchet S., Gevrey M., Buisson L., Tudesque L., Loot G. 2013. Patterns and processes of alternative host use in a generalist parasite: Insights from a natural host-parasite interaction. Functional Ecology, 27, 1403–1414. CrossrefGoogle Scholar

  • Maldonado A., Lanfredi R. M. 2009. Echinostomes in the wild. In: B.R. Fried, R. Toledo (Eds) The biology of echinostomes: From the molecule to the community. Springer, LLC, New York, NY, pp. 129–146Google Scholar

  • McCarthy A.M. 1999. The influence of temperature on the survival and infectivity of the cercariae of Echinoparyphium recurvatum.(Digenea: Echinostomatidae). Parasitology, 118, 383–388CrossrefGoogle Scholar

  • Mitchell C.E., Tilman D., Groth J.V. 2003. Effects of grassland plant species diversity, abundance, and composition on foliar fungal disease. Ecology, 83, 1713–1726. CrossrefGoogle Scholar

  • Morley N.J., Crane M., Lewis J.W. 2004a. Influence of cadmium exposure on the incidence of first intermediate host encystment by Echinoparyphium recurvatum cercariae in Lymnaea peregra. Journal of Helminthology, 78, 329–332. CrossrefGoogle Scholar

  • Morley N.J., Lewis J.W., Adam M.E. 2004b. Metacercarial utilization of a naturally infected single species (Lymnaea peregra) snail community by Echinoparyphium recurvatum. Journal of Helminthology, 78, 51–56. CrossrefGoogle Scholar

  • Orlofske S.A., Jadin R.C., Preston D.L., Johnson P.T.J. 2012. Parasite transmission in complex communities: Predators and alternative hosts alter pathogenic infections in amphibians. Ecology, 93, 1247–1253. CrossrefGoogle Scholar

  • Osenberg C.W. 1989. Resource limitation, competitoin, and the influence of life history in a freshwater snail community. Oecologia, 79, 512–519. CrossrefGoogle Scholar

  • Ostfeld R.S., Keesing F. 2000a. Biodiversity and disease risk: The case of Lyme disease. Conservation Biology, 14, 722–728. CrossrefGoogle Scholar

  • Ostfeld R.S, Keesing F. 2000b. The function of biodiversity in the ecology of vector-borne zoonotic diseases. Canadian Journal of Zoology, 78, 2061–2078. CrossrefGoogle Scholar

  • Perkins S.E., Cattadori I.M., Tagliapietra V., Rizzoli A.P., Hudson P.J. 2006. Localized deer absence leads to tick amplification. Ecology, 87, 1981–1986. [1981:LDALTT]2.0.CO;2CrossrefGoogle Scholar

  • Poulin R. (Ed.) 1998. Evolutionary ecology of parasites: From individuals to communities. Chapman and Hall, London, U.K.Google Scholar

  • Sandland G J., Minchella D. J. 2003. Effects of diet and Echinostoma revolutum infection on energy allocation patterns in juvenile Lymnaea elodes snails. Oecologia 134: 479–486. CrossrefGoogle Scholar

  • Schell S.C. (Ed.) 1985. Handbook of trematodes of North America north of Mexico. University of Idaho Press, Moscow, ID, USAGoogle Scholar

  • Schmidt K. A., Fried B. 1996. Emergence of cercariae of Echinostoma trivolvis from Helisoma trivolvis under different conditions. Journal of Parasitology 82: 674–676. CrossrefGoogle Scholar

  • Schotthoefer A.M., Cole R.A., Beasley V.R. 2003. Relationship of tadpole stage to location of echinostome cercariae encystment and the consequences for tadpole survival. Journal of Parasitology89, 475–482. CrossrefGoogle Scholar

  • Sheldon S.P. 1987. The effects of herbivorous snails on submerged communities in Minnesota lakes. Ecology, 68, 1920–1931. CrossrefGoogle Scholar

  • Sorensen R. E., Minchella D. J. 1998. Parasite influences on host life history: Echinostoma revolutum parasitism of Lymnaea elodessnails. Oecologia, 115, 188–195. CrossrefGoogle Scholar

  • Swamikannu X., Hoagland K. 1989. Effects of snail grazing on the diversity and structure of a periphyton community in a eutrophic pond. Canadian Journal of Aquatic Science, 46, 1698–1704. CrossrefGoogle Scholar

  • Swanson G.A., Meyer M.I. 1977. Impact of fluctuating water levels on feeding ecology of breeding blue-winged teal. Journal of Wildlife Management, 41, 426–433. CrossrefGoogle Scholar

  • Swanson G.A., Meyer M.I., Adomaitis V.A. 1985. Foods consumed by breeding mallards on wetlands of south-central North Dakota. Journal of Wildlife Management, 49, 197–203. CrossrefGoogle Scholar

  • Thieltges D.W., Jensen K.T., Poulin R. 2008. The role of biotic factors in the transmission of free-living endohelminth stages. Parasitology, 135, 407–426. CrossrefGoogle Scholar

  • Thieltges D.W., Reise K., Prinz K., Jensen K.T. 2009. Invaders interfere with native parasite-host interactions. Biological Invasions, 11, 1421–1429. CrossrefGoogle Scholar

  • Upatham E.S., Sturrock R.F. 1973. Field investigations on the effect of other aquatic animals on the infection of Biomphalaria glabrata by Schistosoma mansoni miracidia. Journal of Parasitology 59, 448–453. CrossrefGoogle Scholar

  • Vanesky M.D., Liu X., Sauer E.L., Rohr J.R. 2013. Linking manipulative experiments to field data to test the dilution effect. Journal of Animal Ecology 83, 557–565. CrossrefGoogle Scholar

  • Zimmermann M.R., Luth K.E., Esch G.W. 2014. Differences in snail ecology lead to infection pattern variation of Echinostoma spp. larval stages. Acta Parasitologica 59, 502–509. CrossrefGoogle Scholar

  • Zimmermann M.R., Luth K.E., Esch G.W. 2015. Auto-infection by Echinostoma spp. cercariae in Helisoma anceps. Acta Parasitologica 60, 700–706. .CrossrefGoogle Scholar

  • Zimmermann M.R., Luth K.E. Esch G.W. 2016. Transmission pattern differences of miracidia and cercariae larval stages of digenetic trematode parasites. Acta Parasitologica 61, 680–688. CrossrefGoogle Scholar

About the article

Received: 2017-01-10

Revised: 2017-05-17

Accepted: 2017-05-22

Published Online: 2017-07-05

Published in Print: 2017-09-26


Citation Information: Acta Parasitologica, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0059.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS. Copyright Clearance Center

Comments (0)

Please log in or register to comment.
Log in