Jump to ContentJump to Main Navigation
Show Summary Details
More options …

Acta Parasitologica

IMPACT FACTOR 2017: 1.039
5-year IMPACT FACTOR: 1.121

CiteScore 2017: 1.17

SCImago Journal Rank (SJR) 2017: 0.641
Source Normalized Impact per Paper (SNIP) 2017: 0.738

More options …
Volume 62, Issue 3


Molecular phylogeny of the Haplosplanchnata Olson, Cribb, Tkach, Bray and Littlewood, 2003, with a description of Schikhobalotrema huffmani n. sp.

Daniel C. Huston / Scott C. Cutmore / Thomas H. Cribb
Published Online: 2017-07-05 | DOI: https://doi.org/10.1515/ap-2017-0060


We describe Schikhobalotrema huffmani n. sp. from Tylosurus crocodilus (Péron and Leseur) (Belonidae) collected off Lizard Island, Great Barrier Reef, Queensland, Australia and Tylosurus gavialoides (Castelnau) collected from Moreton Bay, Queensland. Schikhobalotrema huffmani n. sp., along with Schikhobalotrema ablennis (Abdul-Salam and Khalil, 1987) Madhavi, 2005, Schikhobalotrema acutum (Linton, 1910) Skrjabin and Guschanskaja, 1955 and Schikhobalotrema adacutum (Manter, 1937) Skrjabin and Guschanskaja, 1955 are distinguished from all other species of Schikhobalotrema Skrjabin and Guschanskaja, 1955 in having ventral suckers which bear lateral lobes and have longitudinal apertures. Schikhobalotrema huffmani n. sp. differs from S. ablennis in having an obvious post-vitelline region and a longer forebody. From S. acutum, S. huffmani n. sp. differs in having a prostatic bulb smaller than the pharynx and more anterior testis. From S. adacutum, S. huffmani n. sp. differs in having more prominent ventral sucker lobes, a conspicuous prostatic bulb and a longer forebody. We also report the first Australian record of Haplosplanchnus pachysomus (Eysenhardt, 1829) Looss, 1902, from Mugil cephalus Linnaeus (Mugilidae) collected in Moreton Bay. Molecular sequence data (ITS2, 18S and 28S rDNA) were generated for Schikhobalotrema huffmani n. sp., H. pachysomus and archived specimens of Hymenocotta mulli Manter, 1961. The new 18S and 28S molecular data were combined with published data of five other haplosplanchnid taxa to expand the phylogeny for the Haplosplanchnata. Bayesian inference and Maximum Likelihood analyses recovered identical tree topology and demonstrated the Haplosplanchnata as a well-supported monophyletic group. However, relationships at and below the subfamily level remain poorly resolved.

Keywords: Haplosplanchnoidea; Haplosplanchnidae; Haplosplanchnus; Hymenocotta; Lizard Island; Queensland


  • Abdul-Salam J., Khalil L.F. 1987. Two digeneans from the needlefish Ablennes hians in Kuwait and the description of a new genus and species, Neohaplosplanchnus ablennis (Haplosplanchnidae). Systematic Parasitology, 10, 149–158Google Scholar

  • Ankenbrand M.J., Keller A., Wolf M., Schultz J., Förster F. 2015. ITS2 database V: Twice as much. Molecular Biology and Evolution, 32, 3030–3032CrossrefGoogle Scholar

  • Besprozvannykh V.V., Atopkin D.M., Ngo H.D., Ermolenko A.V, Ha N.V., Tang N.V., Beloded A.Yu. 2016. Morphometric and molecular analyses of two digenean species from the mullet: Haplosplanchnus pachysomus (Eysenhardt, 1892) from Vietnam and Provitellotrema crenimugilis Pan, 1984 from the Russian southern Far East. Journal of Helminthology, 90, 238–234CrossrefGoogle Scholar

  • Blasco-Costa I., Cutmore S.C., Miller T.L., Nolan M.J. 2016. Molecular approaches to trematode systematics:‘best practice’ and implications for future study. Systematic Parasitology, 93, 295–306Google Scholar

  • Blasco-Costa I. 2009. Taxonomy of the Haploporinae Nicoll, 1914 and Bunocotylinae Dollfus, 1950 (Digenea) from Mediterranean mullets (Teleostei): morphological and molecular approaches. PhD thesis, Department of Zoology, Universidad de Valencia, Valencia SpainGoogle Scholar

  • Bray R.A., Cribb T.H. 2006. Overstreetia olsoni n. sp.(Digenea: Zoogonidae) from the Capricorn silverside Atherinomorus capricornensis (Woodland)(Atherinidae) off Heron Island, southern Great Barrier Reef. Systematic Parasitology, 63, 41–43Google Scholar

  • Caballero-Rodríguez G. 1990. Trematodos de peces marinos del Golfo de México y del Mar Caribe II. Familias Haplosplanchnidae y Opecoelidae. Anales del Instituto de Ciencias del Mary Limología, Universidad Nacional Autónoma de México, 17, 191–203. (In Spanish)Google Scholar

  • Caballero C., Bavo-Hollis M., Grocott, R.G. 1953. Helmintos de la República de Panamá. VII. Descripción de algunos tremátodos de peces marinos. Anales del Instituto de Biologia, 24, 97–136. (In Spanish)Google Scholar

  • Cribb T.H., Adlard R.D., Bray R.A. 1998. A DNA-based demonstration of a three-host life-cycle for the Bivesiculidae (Platyhelminthes: Digenea). International Journal for Parasitology, 28, 1791–1795CrossrefGoogle Scholar

  • Cribb T.H., Bray R.A. 2010. Gut wash, body soak, blender and heat-fixation: approaches to the effective collection, fixation and preservation of trematodes of fishes. Systematic Parasitology, 76, 1–7Google Scholar

  • Cribb T.H., Bray R.A., Barker S.C. 1994. Bivesiculidae and Haplosplanchnidae (Digenea) from fishes of the southern Great Barrier Reef, Australia. Systematic Parasitology, 28, 81–97Google Scholar

  • Cribb T.H., Bray R.A., Diaz P.E., Huston D.C., Kudlai O., Martin S.B., et al. 2016. Trematodes of fishes of the Indo–west Pacific: told and untold richness. Systematic Parasitology, 93, 237–247Google Scholar

  • Cribb T.H., Bray R.A., Littlewood D.T.J., Pichelin S.P., Herniou E.A. 2001. The Digenea. In: (Eds. D.T.J. Littlewood and R.A. Bray) Interrelationships of the Platyhelminthes. London, Taylor and Francis, 168–185Google Scholar

  • Cutmore S.C., Diggles B.K., Cribb T.H. 2016. Transversotrema Witenberg, 1944 (Trematoda: Transversotrematidae) from inshore fishes of Australia: description of a new species and significant range extensions for three congeners. Systematic Parasitology, 93, 639–652Google Scholar

  • Cutmore S.C., Miller T.L., Curran S.S., Bennett M.B., Cribb T.H. 2013. Phylogenetic relationships of the Gorgoderidae (Platyhelminthes: Trematoda), including the proposal of a new subfamily (Degeneriinae n. subfam.). Parasitology Research, 112, 3063–3074CrossrefGoogle Scholar

  • Edgar R.C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797Google Scholar

  • Elwood H.J., Olsen G.J., Sogin M.L. 1985. The small-subunit ribosomal RNA gene sequences from the hypotrichous ciliates Oxytricha nova and Stylonychia pustulata. Molecular Biology and Evolution, 2, 399–410Google Scholar

  • Eysenhardt H. W. 1829. Einiges über eingeweide-würmer. Verhandlungen der Gesellschaft Naturforschender Freunde zu Berlin, 1, 144–152. (In German)Google Scholar

  • Gibson D. 2013. Schikhobalotrema Skrjabin and Guschanskaja, 1955. Accessed through: World Register of Marine Species at http://www.marinespecies.org/aphia.php?p=taxdetails&id=108499 on 2016-11–28

  • Huston D.C., Cutmore S.C., Cribb T.H. 2016. The life-cycle of Gorgocephalus yaaji Bray and Cribb, 2005 (Digenea: Gorgocephalidae) with a review of the first intermediate hosts for the superfamily Lepocreadioidea Odhner, 1905. Systematic Parasitology, 93, 653–665Google Scholar

  • Keller A., Schleicher T., Schultz J., Müller T., Dandekar T., Wolf M. 2009. 5.8 S-28S rRNA interaction and HMM-based ITS2 annotation. Gene, 430, 50–57Google Scholar

  • Kudlai O., Pulis E.E., Kostadinova A., Tkach V.V. 2016. Neopsilotrema n. g. (Digenea: Psilostomidae) and three new species from ducks (Anseriformes: Anatidae) in North America and Europe. Systematic Parasitology, 93, 307–319Google Scholar

  • Kumar S., Stecher G., Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Molecular Biology and Evolution, 33, 1870–1874CrossrefGoogle Scholar

  • Lanfear R., Calcott B., Ho S.Y., Guindon S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29, 1695–1701CrossrefGoogle Scholar

  • Linton E. 1910. Helminth fauna of the Dry Tortugas. II. Trematodes. Papers from the Tortugas Laboratory of the Carnegie Institute of Washington, 4, 11–98Google Scholar

  • Littlewood D.T.J. 1994. Molecular phylogenetics of cupped oysters based on partial 28S rRNA gene sequences. Molecular Phylogenetics and Evolution, 3, 221–229CrossrefGoogle Scholar

  • Littlewood D.T.J., Curini-Galletti M., Herniou E.A. 2000. The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Molecular Phylogenetics and Evolution, 16, 449–466CrossrefGoogle Scholar

  • Littlewood D.T.J., Olson P. 2001. Small subunit rDNA and the Platyhelminthes: signal, noise, conflict and compromise. In: (Eds D.T.J. Littlewood and R.A. Bray), Interrelationships of the Platyhelminthes, London, Taylor and Francis, 262–278Google Scholar

  • Littlewood D.T.J., Rohde K., Clough K.A. 1997. Parasite speciation within or between host species?—Phylogenetic evidence from site-specific polystome monogeneans. International Journal for Parasitology, 27, 1289–1297CrossrefGoogle Scholar

  • Liu S. 2003. Two new species of Haplosplanchnidae (Digenea) from Liza caranatus from the Taiwan Straits, China. Acta Hydrobiologica Sinica, 5, 531–534. (In Chinese with English summary)Google Scholar

  • Looss A. 1902. Zur kenntnis der trematodenfauna des Triester Hafens. II. Ueber Monorchis Montic. und Haplosplanchnus n. g. Zentralblatt für Bakteriologie, Parasitenkunde und Infectionskrankheiten, 32, 115–122. (In German)Google Scholar

  • Machida M., Kuramochi T. 2000. Digenean trematodes from halfbeaks and needlefishes of Japan and adjacent waters. Bulletin of the National Science Museum, Japan. Series A. Zoology, 26, 203–218.Google Scholar

  • Machida M., Uchida A. 1990. Trematodes from unicornfishes of Japanese and adjacent waters. Memoirs of the National Science Museum, Tokyo, 23, 69–81Google Scholar

  • Madhavi R. 1979. Digenetic trematodes from marine fishes of Waltair Coast, Bay of Bengal. Families Haplosplanchnidae and Haploporidae. Rivista di Parassitologia, 40, 237–248.Google Scholar

  • Madhavi R. 2005. Superfamily Haplosplanchnoidea Poche, 1926. In: (Eds A. Jones, R.A. Bray and D.I. Gibson) Keys to the Trematoda, Vol. 2. CABI Publishing and the Natural History Museum, Wallingford, 175–184Google Scholar

  • Manter H.W. 1937. The status of the trematode genus Deradena Linton with a description of six species of Haplosplanchnus Looss. In: R.-E.S. Schulz and M. P. Gnyedina (Eds) Papers on helminthology published in commemoration of the 30 year jubileum of KJ Skrjabin and the 15th anniversary of the All-Union Institute of Helminthology. Moscow: All-Union Lenin Academy of Agricultural Sciences, pp. 381–387Google Scholar

  • Miller M.A., Pfeiffer W., Schwartz T. 2010. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, LA, pp. 1–8Google Scholar

  • Miller T.L., Bray R.A., Cribb T.H. 2011. Taxonomic approaches to and interpretation of host specificity of trematodes of fishes: lessons from the Great Barrier Reef. Parasitology, 138, 1710– 1722CrossrefGoogle Scholar

  • Morgan J.A., Blair D. 1995. Nuclear rDNA ITS sequence variation in the trematode genus Echinostoma: an aid to establishing relationships within the 37-collar-spine group. Parasitology, 111, 609–615CrossrefGoogle Scholar

  • Nahhas F. M., Rhodes D.Y., Seeto J. 1997. Digenetic Trematodes of Marine Fishes from Suva, Fiji. Family Haplosplanchnidae Poche, 1926: description of new species, a review and an update. Marine Studies. The University of the South Pacific Technical Report Series 97/4, pp.87Google Scholar

  • Nolan M.J., Cribb T.H. 2005. The use and implications of ribosomal DNA sequencing for the discrimination of digenean species. Advances in Parasitology, 60, 101–163Google Scholar

  • Nolan M.J., Cribb T.H. 2006. Cardicola Short, 1953 and Braya n. gen.(Digenea: Sanguinicolidae) from five families of tropical Indo-Pacific fishes. Zootaxa, 1265, 3–80Google Scholar

  • Olson P., Cribb T.H., Tkach V.V., Bray R.A., Littlewood D.T.J. 2003. Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology, 33, 733–755CrossrefGoogle Scholar

  • Overstreet R. M. 1969. Digenetic trematodes of marine teleost fishes from Biscayne Bay, Florida. Tulane Studies in Zoology and Botany, 15, 119–176Google Scholar

  • Pleijel F., Jondelius U., Norlinder E., Nygren A., Oxelman B., Schander C., et al. 2008. Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371CrossrefGoogle Scholar

  • Ronquist F., Teslenko M., van der Mark P., Ayres D.L., Darling A., Höhna S., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542Google Scholar

  • Sambrook J., Russell D. (Eds). 2001. Molecular Cloning: a Laboratory Manual, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp. 234Google Scholar

  • Snyder S.D., Tkach V.V. 2001. Phylogenetic and biogeographical relationships among some holarctic frog lung flukes (Digenea: Haematoloechidae). Journal of Parasitology, 87, 1433–1440CrossrefGoogle Scholar

  • Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics, 30, 1312–1313CrossrefGoogle Scholar

  • Tan G., Muffato M., Ledergerber C., Herrero J., Goldman N., Gil M., Dessimoz C. 2015. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Systematic Biology, 64, 778–791Google Scholar

  • Trieu N., Cutmore S.C., Miller T.L., Cribb T.H. 2015. A species pair of Bivesicula Yamaguti, 1934 (Trematoda: Bivesiculidae) in unrelated Great Barrier Reef fishes: implications for the basis of speciation in coral reef fish trematodes. Systematic Parasitology, 91, 231–239Google Scholar

  • Wee N.Q., Cribb T.H., Bray R.A., Cutmore S.C. 2017. Two known and one new species of Proctoeces from Australian teleosts: variable host-specificity for closely related species identified through multi-locus molecular data. Parasitology International, 66, 16–26Google Scholar

About the article

Received: 2016-11-29

Revised: 2017-03-03

Accepted: 2017-03-27

Published Online: 2017-07-05

Published in Print: 2017-09-26

Citation Information: Acta Parasitologica, Volume 62, Issue 3, Pages 502–512, ISSN (Online) 1896-1851, ISSN (Print) 1230-2821, DOI: https://doi.org/10.1515/ap-2017-0060.

Export Citation

© 2017 W. Stefański Institute of Parasitology, PAS.Get Permission

Citing Articles

Here you can find all Crossref-listed publications in which this article is cited. If you would like to receive automatic email messages as soon as this article is cited in other publications, simply activate the “Citation Alert” on the top of this page.

Comments (0)

Please log in or register to comment.
Log in